IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007186.html
   My bibliography  Save this article

Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

Author

Listed:
  • Xingjie Hao
  • Ping Zeng
  • Shujun Zhang
  • Xiang Zhou

Abstract

Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.Author summary: Identifying trait-relevant tissues is an important step towards understanding disease etiology. Computational methods have been recently developed to integrate SNP functional annotations generated from omics studies to genome-wide association studies (GWASs) to infer trait-relevant tissues. However, two important questions remain to be answered. First, with the increasing number and types of functional annotations nowadays, how do we integrate multiple annotations jointly into GWASs in a trait-specific fashion? Doing so would allow us to take advantage of the complementary information contained in these annotations to optimize the performance of trait-relevant tissue inference. Second, what to do with the inferred trait-relevant tissues? Here, we develop a new statistical method and software to make progress on both fronts. For the first question, we extend the commonly used linear mixed model, with new algorithms and inference strategies, to incorporate multiple annotations in a trait-specific fashion to improve trait-relevant tissue inference accuracy. For the second question, we rely on the close relationship between our proposed method and the widely-used sequence kernel association test, and use the inferred trait-relevant tissues, for the first time, to construct more powerful association tests. We illustrate the benefits of our method through extensive simulations and applications to a wide range of real data sets.

Suggested Citation

  • Xingjie Hao & Ping Zeng & Shujun Zhang & Xiang Zhou, 2018. "Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies," PLOS Genetics, Public Library of Science, vol. 14(1), pages 1-32, January.
  • Handle: RePEc:plo:pgen00:1007186
    DOI: 10.1371/journal.pgen.1007186
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007186
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007186&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.