IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1006963.html
   My bibliography  Save this article

Composite likelihood method for inferring local pedigrees

Author

Listed:
  • Amy Ko
  • Rasmus Nielsen

Abstract

Pedigrees contain information about the genealogical relationships among individuals and are of fundamental importance in many areas of genetic studies. However, pedigrees are often unknown and must be inferred from genetic data. Despite the importance of pedigree inference, existing methods are limited to inferring only close relationships or analyzing a small number of individuals or loci. We present a simulated annealing method for estimating pedigrees in large samples of otherwise seemingly unrelated individuals using genome-wide SNP data. The method supports complex pedigree structures such as polygamous families, multi-generational families, and pedigrees in which many of the member individuals are missing. Computational speed is greatly enhanced by the use of a composite likelihood function which approximates the full likelihood. We validate our method on simulated data and show that it can infer distant relatives more accurately than existing methods. Furthermore, we illustrate the utility of the method on a sample of Greenlandic Inuit.Author summary: Pedigrees contain information about the genealogical relationships among individuals. This information can be used in many areas of genetic studies such as disease association studies, conservation efforts, and for inferences about the demographic history and social structure of a population. Despite their importance, pedigrees are often unknown and must be estimated from genetic information. However, pedigree inference remains a difficult problem due to the high cost of likelihood computation and the enormous number of possible pedigrees that must be considered. These difficulties limit existing methods in their ability to infer pedigrees when the sample size or the number of markers is large, or when the sample contains only distant relatives. In this report, we present a method that circumvents these computational challenges in order to infer pedigrees of complex structure for a large number of individuals. Using simulations, we find that the method can infer distant relatives much more accurately than existing methods. Furthermore, we show that even pairwise inferences of relatedness can be improved substantially by consideration of the pedigree structure with other related individuals in the sample.

Suggested Citation

  • Amy Ko & Rasmus Nielsen, 2017. "Composite likelihood method for inferring local pedigrees," PLOS Genetics, Public Library of Science, vol. 13(8), pages 1-21, August.
  • Handle: RePEc:plo:pgen00:1006963
    DOI: 10.1371/journal.pgen.1006963
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006963
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006963&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1006963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oren E Livne & Lide Han & Gorka Alkorta-Aranburu & William Wentworth-Sheilds & Mark Abney & Carole Ober & Dan L Nicolae, 2015. "PRIMAL: Fast and Accurate Pedigree-based Imputation from Sequence Data in a Founder Population," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Reppell & John Novembre, 2018. "Using pseudoalignment and base quality to accurately quantify microbial community composition," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-23, April.
    2. Esther Ulitzsch & Qiwei He & Vincent Ulitzsch & Hendrik Molter & André Nichterlein & Rolf Niedermeier & Steffi Pohl, 2021. "Combining Clickstream Analyses and Graph-Modeled Data Clustering for Identifying Common Response Processes," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 190-214, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.