Author
Abstract
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Author summary: Decline in daily physical activity is thought to be a key contributor to the global obesity epidemic. However, the impact of sedentariness on adiposity may be in part determined by a person’s genetic constitution. The specific genetic variants that are sensitive to physical activity and regulate adiposity remain largely unknown. Here, we aimed to identify genetic variants whose effects on adiposity are modified by physical activity by examining ~2.5 million genetic variants in up to 200,452 individuals. We also tested whether adjusting for physical activity as a covariate could lead to the identification of novel adiposity variants. We find robust evidence of interaction with physical activity for the strongest known obesity risk-locus in the FTO gene, of which the body mass index-increasing effect is attenuated by ~30% in physically active individuals compared to inactive individuals. Our analyses indicate that other similar gene-physical activity interactions may exist, but better measurement of physical activity, larger sample sizes, and/or improved analytical methods will be required to identify them. Adjusting for physical activity, we identify 11 novel adiposity variants, suggesting that accounting for physical activity or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
Suggested Citation
Mariaelisa Graff & Robert A Scott & Anne E Justice & Kristin L Young & Mary F Feitosa & Llilda Barata & Thomas W Winkler & Audrey Y Chu & Anubha Mahajan & David Hadley & Luting Xue & Tsegaselassie Wor, 2017.
"Genome-wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults,"
PLOS Genetics, Public Library of Science, vol. 13(4), pages 1-26, April.
Handle:
RePEc:plo:pgen00:1006528
DOI: 10.1371/journal.pgen.1006528
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.