IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1005403.html
   My bibliography  Save this article

A New Method for Detecting Associations with Rare Copy-Number Variants

Author

Listed:
  • Jung-Ying Tzeng
  • Patrik K E Magnusson
  • Patrick F Sullivan
  • The Swedish Schizophrenia Consortium
  • Jin P Szatkiewicz

Abstract

Copy number variants (CNVs) play an important role in the etiology of many diseases such as cancers and psychiatric disorders. Due to a modest marginal effect size or the rarity of the CNVs, collapsing rare CNVs together and collectively evaluating their effect serves as a key approach to evaluating the collective effect of rare CNVs on disease risk. While a plethora of powerful collapsing methods are available for sequence variants (e.g., SNPs) in association analysis, these methods cannot be directly applied to rare CNVs due to the CNV-specific challenges, i.e., the multi-faceted nature of CNV polymorphisms (e.g., CNVs vary in size, type, dosage, and details of gene disruption), and etiological heterogeneity (e.g., heterogeneous effects of duplications and deletions that occur within a locus or in different loci). Existing CNV collapsing analysis methods (a.k.a. the burden test) tend to have suboptimal performance due to the fact that these methods often ignore heterogeneity and evaluate only the marginal effects of a CNV feature. We introduce CCRET, a random effects test for collapsing rare CNVs when searching for disease associations. CCRET is applicable to variants measured on a multi-categorical scale, collectively modeling the effects of multiple CNV features, and is robust to etiological heterogeneity. Multiple confounders can be simultaneously corrected. To evaluate the performance of CCRET, we conducted extensive simulations and analyzed large-scale schizophrenia datasets. We show that CCRET has powerful and robust performance under multiple types of etiological heterogeneity, and has performance comparable to or better than existing methods when there is no heterogeneity.Author Summary: Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage, length and details of gene disruptions. Rare CNVs have been shown to be associated with neuropsychiatric disorders both collectively and at specific loci. To evaluate the collective effects of rare CNVs on disease risk, sophisticated association methods are needed to pool information across CNV loci while handling CNV-specific properties; however, such methods are under-developed. To address these challenges, we have developed a new collapsing method for rare CNVs named CCRET. CCRET is a random effects approach applicable to variants measured on a multi-categorical scale, collectively modeling the effects of multiple CNV features, and is robust to etiological heterogeneity. Multiple confounders can be simultaneously corrected. To evaluate the performance of CCRET, we conducted extensive simulation and analyzed large-scale schizophrenia datasets. We demonstrate the robustness, validity and utility of CCRET under a variety of scenarios.

Suggested Citation

  • Jung-Ying Tzeng & Patrik K E Magnusson & Patrick F Sullivan & The Swedish Schizophrenia Consortium & Jin P Szatkiewicz, 2015. "A New Method for Detecting Associations with Rare Copy-Number Variants," PLOS Genetics, Public Library of Science, vol. 11(10), pages 1-24, October.
  • Handle: RePEc:plo:pgen00:1005403
    DOI: 10.1371/journal.pgen.1005403
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005403
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005403&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1005403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1005403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.