IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1005069.html
   My bibliography  Save this article

Multi-locus Analysis of Genomic Time Series Data from Experimental Evolution

Author

Listed:
  • Jonathan Terhorst
  • Christian Schlötterer
  • Yun S Song

Abstract

Genomic time series data generated by evolve-and-resequence (E&R) experiments offer a powerful window into the mechanisms that drive evolution. However, standard population genetic inference procedures do not account for sampling serially over time, and new methods are needed to make full use of modern experimental evolution data. To address this problem, we develop a Gaussian process approximation to the multi-locus Wright-Fisher process with selection over a time course of tens of generations. The mean and covariance structure of the Gaussian process are obtained by computing the corresponding moments in discrete-time Wright-Fisher models conditioned on the presence of a linked selected site. This enables our method to account for the effects of linkage and selection, both along the genome and across sampled time points, in an approximate but principled manner. We first use simulated data to demonstrate the power of our method to correctly detect, locate and estimate the fitness of a selected allele from among several linked sites. We study how this power changes for different values of selection strength, initial haplotypic diversity, population size, sampling frequency, experimental duration, number of replicates, and sequencing coverage depth. In addition to providing quantitative estimates of selection parameters from experimental evolution data, our model can be used by practitioners to design E&R experiments with requisite power. We also explore how our likelihood-based approach can be used to infer other model parameters, including effective population size and recombination rate. Then, we apply our method to analyze genome-wide data from a real E&R experiment designed to study the adaptation of D. melanogaster to a new laboratory environment with alternating cold and hot temperatures.Author Summary: A growing number of experimental biologists are generating “evolve-and-resequence” (E&R) data in which the genomes of an experimental population are repeatedly sequenced over time. The resulting time series data provide important new insights into the dynamics of evolution. This type of analysis has only recently been made possible by next-generation sequencing, and new statistical procedures are required to analyze this novel data source. We present such a procedure here, and apply it to both simulated and real E&R data.

Suggested Citation

  • Jonathan Terhorst & Christian Schlötterer & Yun S Song, 2015. "Multi-locus Analysis of Genomic Time Series Data from Experimental Evolution," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-29, April.
  • Handle: RePEc:plo:pgen00:1005069
    DOI: 10.1371/journal.pgen.1005069
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005069
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005069&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1005069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew H Chan & Paul A Jenkins & Yun S Song, 2012. "Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayman, Elizabeth & Ignatieva, Anastasia & Hein, Jotun, 2023. "Recoverability of ancestral recombination graph topologies," Theoretical Population Biology, Elsevier, vol. 154(C), pages 27-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1005069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.