Author
Listed:
- Alexander Pemov
- Heejong Sung
- Paula L Hyland
- Jennifer L Sloan
- Sarah L Ruppert
- Andrea M Baldwin
- Joseph F Boland
- Sara E Bass
- Hyo Jung Lee
- Kristine M Jones
- Xijun Zhang
- NISC Comparative Sequencing Program
- James C Mullikin
- Brigitte C Widemann
- Alexander F Wilson
- Douglas R Stewart
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant, monogenic disorder of dysregulated neurocutaneous tissue growth. Pleiotropy, variable expressivity and few NF1 genotype-phenotype correlates limit clinical prognostication in NF1. Phenotype complexity in NF1 is hypothesized to derive in part from genetic modifiers unlinked to the NF1 locus. In this study, we hypothesized that normal variation in germline gene expression confers risk for certain phenotypes in NF1. In a set of 79 individuals with NF1, we examined the association between gene expression in lymphoblastoid cell lines with NF1-associated phenotypes and sequenced select genes with significant phenotype/expression correlations. In a discovery cohort of 89 self-reported European-Americans with NF1 we examined the association between germline sequence variants of these genes with café-au-lait macule (CALM) count, a tractable, tumor-like phenotype in NF1. Two correlated, common SNPs (rs4660761 and rs7161) between DPH2 and ATP6V0B were significantly associated with the CALM count. Analysis with tiled regression also identified SNP rs4660761 as significantly associated with CALM count. SNP rs1800934 and 12 rare variants in the mismatch repair gene MSH6 were also associated with CALM count. Both SNPs rs7161 and rs4660761 (DPH2 and ATP6V0B) were highly significant in a mega-analysis in a combined cohort of 180 self-reported European-Americans; SNP rs1800934 (MSH6) was near-significant in a meta-analysis assuming dominant effect of the minor allele. SNP rs4660761 is predicted to regulate ATP6V0B, a gene associated with melanosome biology. Individuals with homozygous mutations in MSH6 can develop an NF1-like phenotype, including multiple CALMs. Through a multi-platform approach, we identified variants that influence NF1 CALM count.Author Summary: Neurofibromatosis type 1 (NF1) is a relatively common genetic disease that increases the chance to develop a variety of benign and malignant tumors. People with NF1 also typically feature a large number of birthmarks called café-au-lait macules. It is difficult to predict severity or specific problems in NF1. We sought to identify genes (other than NF1, the gene that causes the disease) that influence severity in NF1. We determined the number of café-au-lait macules in two groups of people with NF1. We measured the gene expression of about 10,000 genes in the cultured white blood cells from one group of people. We then sequenced a group of genes whose expression level was increased in people with higher numbers of café-au-lait macules. In the first group, we found common variants in genes MSH6 and near DPH2 and ATP6V0B that were significantly associated with the number of café-au-lait macules. Some of these variants were close to significant in the second group of people. The two variants near DPH2 and ATP6V0B were very significant when analysed in both groups combined. Our work is among the first to identify genetic variants that influence the severity of NF1.
Suggested Citation
Alexander Pemov & Heejong Sung & Paula L Hyland & Jennifer L Sloan & Sarah L Ruppert & Andrea M Baldwin & Joseph F Boland & Sara E Bass & Hyo Jung Lee & Kristine M Jones & Xijun Zhang & NISC Comparati, 2014.
"Genetic Modifiers of Neurofibromatosis Type 1-Associated Café-au-Lait Macule Count Identified Using Multi-platform Analysis,"
PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-12, October.
Handle:
RePEc:plo:pgen00:1004575
DOI: 10.1371/journal.pgen.1004575
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1004575. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.