Author
Listed:
- Eun Yong Kang
- Buhm Han
- Nicholas Furlotte
- Jong Wha J Joo
- Diana Shih
- Richard C Davis
- Aldons J Lusis
- Eleazar Eskin
Abstract
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.Author Summary: Identifying gene-by-environment interactions is important for understand the architecture of a complex trait. Discovering gene-by-environment interaction requires the observation of the same phenotype in individuals under different environments. Model organism studies are often conducted under different environments. These studies provide an unprecedented opportunity for researchers to identify the gene-by-environment interactions. A difference in the effect size of a genetic variant between two studies conducted in different environments may suggest the presence of a gene-by-environment interaction. In this paper, we propose to employ a random-effect-based meta-analysis approach to identify gene-by-environment interaction, which assumes different or heterogeneous effect sizes between studies. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional approaches for discovery of gene-by-environment interactions, which treats the gene-by-environment interactions as covariates in the analysis. We provide a intuitive way to visualize the results of the meta-analysis at a locus which allows us to obtain the biological insights of gene-by-environment interactions. We demonstrate our method by searching for gene-by-environment interactions by combining 17 mouse genetic studies totaling 4,965 distinct animals.
Suggested Citation
Eun Yong Kang & Buhm Han & Nicholas Furlotte & Jong Wha J Joo & Diana Shih & Richard C Davis & Aldons J Lusis & Eleazar Eskin, 2014.
"Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice,"
PLOS Genetics, Public Library of Science, vol. 10(1), pages 1-16, January.
Handle:
RePEc:plo:pgen00:1004022
DOI: 10.1371/journal.pgen.1004022
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1004022. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.