Author
Listed:
- Saheli Chowdhury
- Annemiek Dijkhuis
- Sabrina Steiert
- René Lutter
Abstract
Interleukin 17A (IL-17), a mediator implicated in chronic and severe inflammatory diseases, enhances the production of pro-inflammatory mediators by attenuating decay of the encoding mRNAs. The decay of many of these mRNAs depends on proteins (AUBps) that target AU-rich elements in the 3′-untranslated region of mRNAs and facilitate either mRNA decay or stabilization. Here we show that AUBps and the target mRNA assemble in a novel ribonucleoprotein complex in the presence of microRNA16 (miR16), which leads to the degradation of the target mRNA. Notably, IL-17 attenuates miR16 expression and promotes the binding of stabilizing AUBps over that of destabilizing AUBps, reducing mRNA decay. These findings indicate that miR16 independently of a seed sequence, directs the competition between degrading and stabilizing AUBps for target mRNAs. Since AUBps affect expression of about 8% of the human transcriptome and miR16 is ubiquitously expressed, IL-17 may in addition to inflammation affect many other cellular processes.Author Summary: Inflammation is driven by inflammatory mediators. Interleukin 17A (IL-17) is implicated in chronic and severe inflammation and exaggerates production of inflammatory mediators. This is due, at least in part, to the IL-17-attenuated degradation of mRNAs encoding these inflammatory mediators, but the underlying mechanism has remained elusive. Most of these mRNAs contain AU-rich elements in their 3′-untranslated region and are targeted by AU-binding proteins (AUBps) that promote either mRNA degradation or stabilization. Here we show that IL-17 directs the AU-mediated mRNA degradation (AMD pathway) by modulating the interaction of degrading and stabilizing AUBps via microRNA16 (miR16). Whereas microRNAs target mRNAs to the RISC pathway for degradation by binding to a seed sequence, miR16 drives degradation by the AMD pathway without an apparent seed sequence. Transcriptome analyses have revealed that the expression of 8% of all eukaryotic transcripts is dependent on the AMD pathway. Therefore, the impact of IL-17 on inflammatory diseases may extend beyond the production of inflammatory mediators to processes like tissue repair, cell cycle, etc. In addition, targeting AUBp and/or miR16 may provide a novel therapeutic option to combat the IL-17 axis of inflammation.
Suggested Citation
Saheli Chowdhury & Annemiek Dijkhuis & Sabrina Steiert & René Lutter, 2013.
"IL-17 Attenuates Degradation of ARE-mRNAs by Changing the Cooperation between AU-Binding Proteins and microRNA16,"
PLOS Genetics, Public Library of Science, vol. 9(9), pages 1-13, September.
Handle:
RePEc:plo:pgen00:1003747
DOI: 10.1371/journal.pgen.1003747
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003747. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.