Author
Abstract
Even a single mutation can cause a marked change in a protein's properties. When the mutant protein functions within a network, complex phenotypes may emerge that are not intrinsic properties of the protein itself. Network architectures that enable such dramatic changes in function from a few mutations remain relatively uncharacterized. We describe a remarkable example of this versatility in the well-studied PhoQ/PhoP bacterial signaling network, which has an architecture found in many two-component systems. We found that a single point mutation that abolishes the phosphatase activity of the sensor kinase PhoQ results in a striking change in phenotype. The mutant responds to stimulus in a bistable manner, as opposed to the wild-type, which has a graded response. Mutant cells in on and off states have different morphologies, and their state is inherited over many generations. Interestingly, external conditions that repress signaling in the wild-type drive the mutant to the on state. Mathematical modeling and experiments suggest that the bistability depends on positive autoregulation of the two key proteins in the circuit, PhoP and PhoQ. The qualitatively different characteristics of the mutant come at a substantial fitness cost. Relative to the off state, the on state has a lower fitness in stationary phase cultures in rich medium (LB). However, due to the high inheritance of the on state, a population of on cells can be epigenetically trapped in a low-fitness state. Our results demonstrate the remarkable versatility of the prototypical two-component signaling architecture and highlight the tradeoffs in the particular case of the PhoQ/PhoP system.Author Summary: A mutation can cause significant changes to a protein's function. Since proteins often act together in genetic circuits to control various cellular processes, mutant proteins can lead to unexpected consequences for system-level behavior. In this study, we describe a remarkable example of this phenomenon in a mutant of a well-studied bacterial circuit. PhoQ and PhoP are the primary regulatory proteins in a circuit that responds to low magnesium. The wild-type (unmutated) network responds to environmental signals in an analog or graded manner. In contrast, the mutant responds to signals in an OFF-or-ON or digital fashion. Moreover, the distribution of OFF and ON cells is strongly influenced by how cells were cultured in the past. These remarkable changes can be traced to features of the wiring diagram of the PhoQ/PhoP circuit. Since these features are shared among a broad class of bacterial signaling circuits, we suggest that other circuits may show similar remarkable properties when mutated.
Suggested Citation
Sri Ram & Mark Goulian, 2013.
"The Architecture of a Prototypical Bacterial Signaling Circuit Enables a Single Point Mutation to Confer Novel Network Properties,"
PLOS Genetics, Public Library of Science, vol. 9(8), pages 1-13, August.
Handle:
RePEc:plo:pgen00:1003706
DOI: 10.1371/journal.pgen.1003706
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.