IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1001242.html
   My bibliography  Save this article

Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice

Author

Listed:
  • Linda Møllersen
  • Alexander D Rowe
  • Elisabeth Larsen
  • Torbjørn Rognes
  • Arne Klungland

Abstract

Huntington's disease (HD) is one of several neurodegenerative disorders caused by expansion of CAG repeats in a coding gene. Somatic CAG expansion rates in HD vary between organs, and the greatest instability is observed in the brain, correlating with neuropathology. The fundamental mechanisms of somatic CAG repeat instability are poorly understood, but locally formed secondary DNA structures generated during replication and/or repair are believed to underlie triplet repeat expansion. Recent studies in HD mice have demonstrated that mismatch repair (MMR) and base excision repair (BER) proteins are expansion inducing components in brain tissues. This study was designed to simultaneously investigate the rates and modes of expansion in different tissues of HD R6/1 mice in order to further understand the expansion mechanisms in vivo. We demonstrate continuous small expansions in most somatic tissues (exemplified by tail), which bear the signature of many short, probably single-repeat expansions and contractions occurring over time. In contrast, striatum and cortex display a dramatic—and apparently irreversible—periodic expansion. Expansion profiles displaying this kind of periodicity in the expansion process have not previously been reported. These in vivo findings imply that mechanistically distinct expansion processes occur in different tissues.Author Summary: Huntington's disease (HD) is a genetically determined neurodegenerative disorder identified by the presence of a mutation for a long series of CAG repeats (>36 repeats) in the Huntingtin (HTT) gene. Longer repeat sequences cause disease onset at a younger age. The mutation encodes an expanded glutamine tract within the huntingtin protein. This enlarged polyglutamine fragment in the protein leads to the formation of the huntingtin aggregates that are observed in HD brains. The stretch of CAG repeats expands with age in affected brain areas, increasing the length of the polyglutamine tract, and is believed to amplify the effect of the disease. Several HD mouse models display phenotypes relevant to the human disease. We have investigated the rate and modes of expansion in striatum, cortex, and tail in transgenic R6/1 mice. Tail was included as a stable tissue, however we observed a small continuous expansion of CAG repeats in tail tissues. In brain tissues, we identified a periodic expansion process consisting of predominantly seven repeat steps. Our findings point towards a very controlled molecular mechanism as the cause of expansion in the most severely affected tissues, which may provide useful targets that can be used to inhibit disease development.

Suggested Citation

  • Linda Møllersen & Alexander D Rowe & Elisabeth Larsen & Torbjørn Rognes & Arne Klungland, 2010. "Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice," PLOS Genetics, Public Library of Science, vol. 6(12), pages 1-11, December.
  • Handle: RePEc:plo:pgen00:1001242
    DOI: 10.1371/journal.pgen.1001242
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001242
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001242&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1001242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1001242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.