IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1000402.html
   My bibliography  Save this article

Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers across Prokaryotic Lineages

Author

Listed:
  • Wataru Iwasaki
  • Toshihisa Takagi

Abstract

The evolutionary history of biological pathways is of general interest, especially in this post-genomic era, because it may provide clues for understanding how complex systems encoded on genomes have been organized. To explain how pathways can evolve de novo, some noteworthy models have been proposed. However, direct reconstruction of pathway evolutionary history both on a genomic scale and at the depth of the tree of life has suffered from artificial effects in estimating the gene content of ancestral species. Recently, we developed an algorithm that effectively reconstructs gene-content evolution without these artificial effects, and we applied it to this problem. The carefully reconstructed history, which was based on the metabolic pathways of 160 prokaryotic species, confirmed that pathways have grown beyond the random acquisition of individual genes. Pathway acquisition took place quickly, probably eliminating the difficulty in holding genes during the course of the pathway evolution. This rapid evolution was due to massive horizontal gene transfers as gene groups, some of which were possibly operon transfers, which would convey existing pathways but not be able to generate novel pathways. To this end, we analyzed how these pathways originally appeared and found that the original acquisition of pathways occurred more contemporaneously than expected across different phylogenetic clades. As a possible model to explain this observation, we propose that novel pathway evolution may be facilitated by bidirectional horizontal gene transfers in prokaryotic communities. Such a model would complement existing pathway evolution models.Author Summary: Many biological functions, from energy metabolism to antibiotic resistance, are carried out by biological pathways that require a number of cooperatively functioning genes. Hence, underlying mechanisms in the evolution of biological pathways are of particular interest. However, compared to the evolution of individual genes, which has been well studied, the evolution of biological pathways is far less understood. In this study, we used the abundant genome sequences available today and a novel algorithm we recently developed to trace the evolutionary history of prokaryotic metabolic pathways and to analyze how these pathways emerged. We found that the pathways have experienced significantly rapid acquisition, which would play a key role in eliminating the difficulty in holding genes during the course of pathway evolution. In addition, the emergence of novel pathways was suggested to have occurred more contemporaneously than expected across different phylogenetic clades. Based on these observations, we propose that novel pathway evolution can be facilitated by bidirectional horizontal gene transfers in prokaryotic communities. This simple model may approach the question of how biological pathways requiring a number of cooperatively functioning genes can be obtained and are the core event within the evolution of biological pathways in prokaryotes.

Suggested Citation

  • Wataru Iwasaki & Toshihisa Takagi, 2009. "Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers across Prokaryotic Lineages," PLOS Genetics, Public Library of Science, vol. 5(3), pages 1-8, March.
  • Handle: RePEc:plo:pgen00:1000402
    DOI: 10.1371/journal.pgen.1000402
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000402
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000402&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1000402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1000402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.