Author
Listed:
- Peter M Visscher
- Sarah E Medland
- Manuel A R Ferreira
- Katherine I Morley
- Gu Zhu
- Belinda K Cornes
- Grant W Montgomery
- Nicholas G Martin
Abstract
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within-family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.Synopsis: Quantitative geneticists attempt to understand variation between individuals within a population for traits such as height in humans and the number of bristles in fruit flies. This has been traditionally done by partitioning the variation in underlying sources due to genetic and environmental factors, using the observed amount of variation between and within families. A problem with this approach is that one can never be sure that the estimates are correct, because nature and nurture can be confounded without one knowing it. The authors got around this problem by comparing the similarity between relatives as a function of the exact proportion of genes that they have in common, looking only within families. Using this approach, the authors estimated the amount of total variation for height in humans that is due to genetic factors from 3,375 sibling pairs. For each pair, the authors estimated the proportion of genes that they share from DNA markers. It was found that about 80% of the total variation can be explained by genetic factors, close to results that are obtained from classical studies. This study provides the first validation of an estimate of genetic variation by using a source of information that is free from nature–nurture assumptions.
Suggested Citation
Peter M Visscher & Sarah E Medland & Manuel A R Ferreira & Katherine I Morley & Gu Zhu & Belinda K Cornes & Grant W Montgomery & Nicholas G Martin, 2006.
"Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings,"
PLOS Genetics, Public Library of Science, vol. 2(3), pages 1-10, March.
Handle:
RePEc:plo:pgen00:0020041
DOI: 10.1371/journal.pgen.0020041
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0020041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.