Author
Listed:
- Harvineet Singh
- Vishwali Mhasawade
- Rumi Chunara
Abstract
Modern predictive models require large amounts of data for training and evaluation, absence of which may result in models that are specific to certain locations, populations in them and clinical practices. Yet, best practices for clinical risk prediction models have not yet considered such challenges to generalizability. Here we ask whether population- and group-level performance of mortality prediction models vary significantly when applied to hospitals or geographies different from the ones in which they are developed. Further, what characteristics of the datasets explain the performance variation? In this multi-center cross-sectional study, we analyzed electronic health records from 179 hospitals across the US with 70,126 hospitalizations from 2014 to 2015. Generalization gap, defined as difference between model performance metrics across hospitals, is computed for area under the receiver operating characteristic curve (AUC) and calibration slope. To assess model performance by the race variable, we report differences in false negative rates across groups. Data were also analyzed using a causal discovery algorithm “Fast Causal Inference” that infers paths of causal influence while identifying potential influences associated with unmeasured variables. When transferring models across hospitals, AUC at the test hospital ranged from 0.777 to 0.832 (1st-3rd quartile or IQR; median 0.801); calibration slope from 0.725 to 0.983 (IQR; median 0.853); and disparity in false negative rates from 0.046 to 0.168 (IQR; median 0.092). Distribution of all variable types (demography, vitals, and labs) differed significantly across hospitals and regions. The race variable also mediated differences in the relationship between clinical variables and mortality, by hospital/region. In conclusion, group-level performance should be assessed during generalizability checks to identify potential harms to the groups. Moreover, for developing methods to improve model performance in new environments, a better understanding and documentation of provenance of data and health processes are needed to identify and mitigate sources of variation.Author summary: With the growing use of predictive models in clinical care, it is imperative to assess failure modes of predictive models across regions and different populations. In this retrospective cross-sectional study based on a multi-center critical care database, we find that mortality risk prediction models developed in one hospital or geographic region exhibited lack of generalizability to different hospitals or regions. Moreover, distribution of clinical (vitals, labs and surgery) variables significantly varied across hospitals and regions. Based on a causal discovery analysis, we postulate that lack of generalizability results from dataset shifts in race and clinical variables across hospitals or regions. Further, we find that the race variable commonly mediated changes in clinical variable shifts. Findings demonstrate evidence that predictive models can exhibit disparities in performance across racial groups even while performing well in terms of average population-wide metrics. Therefore, assessment of sub-group-level performance should be recommended as part of model evaluation guidelines. Beyond algorithmic fairness metrics, an understanding of data generating processes for sub-groups is needed to identify and mitigate sources of variation, and to decide whether to use a risk prediction model in new environments.
Suggested Citation
Harvineet Singh & Vishwali Mhasawade & Rumi Chunara, 2022.
"Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database,"
PLOS Digital Health, Public Library of Science, vol. 1(4), pages 1-17, April.
Handle:
RePEc:plo:pdig00:0000023
DOI: 10.1371/journal.pdig.0000023
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000023. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.