IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009697.html
   My bibliography  Save this article

Optimal vaccine allocation for COVID-19 in the Netherlands: A data-driven prioritization

Author

Listed:
  • Fuminari Miura
  • Ka Yin Leung
  • Don Klinkenberg
  • Kylie E C Ainslie
  • Jacco Wallinga

Abstract

For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.Author summary: Vaccination is the key to controlling the ongoing COVID-19 pandemic. In the early stages of an epidemic, there is shortage of vaccines. Here, we propose an algorithm that computes an optimal vaccine distribution among groups for different intervention objective (e.g., minimizing new infections, hospitalizations, or deaths). This method is applicable even when multiple vaccines are available. Our results reveal that an allocation scheme optimized for one specific objective is not necessarily efficient for another, indicating the importance of determining the precise objective in the decision making process at the early phase of distributions. Often, data are scarce in the midst of an epidemics. The proposed method requires routine surveillance data on the number of cases to determine the best possible allocation of vaccines.

Suggested Citation

  • Fuminari Miura & Ka Yin Leung & Don Klinkenberg & Kylie E C Ainslie & Jacco Wallinga, 2021. "Optimal vaccine allocation for COVID-19 in the Netherlands: A data-driven prioritization," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-13, December.
  • Handle: RePEc:plo:pcbi00:1009697
    DOI: 10.1371/journal.pcbi.1009697
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009697
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009697&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdoğan, Güneş & Yücel, Eda & Kiavash, Parinaz & Salman, F. Sibel, 2024. "Fair and effective vaccine allocation during a pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    2. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.