IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009261.html
   My bibliography  Save this article

Interspike interval correlations in neuron models with adaptation and correlated noise

Author

Listed:
  • Lukas Ramlow
  • Benjamin Lindner

Abstract

The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.Author summary: The elementary processing units in the central nervous system are neurons that transmit information by short electrical pulses, so called action potentials or spikes. The generation of the action potential is a random process that can be shaped by correlated fluctuations (colored noise) and by adaptation. A consequence of these two ubiquitous features is that the successive time intervals between spikes, the interspike intervals, are not independent but correlated. As these correlations can significantly improve information transmission and weak-signal detection, it is an important task to develop analytical approaches to these statistics for well-established computational models. Here we present a theory of interval correlations for a widely used class of integrate-and-fire models endowed with an adaptation mechanism and subject to correlated fluctuations. We demonstrate which patterns of interval correlations can be expected from the interplay of colored noise, adaptation and intrinsic nonlinear dynamics.

Suggested Citation

  • Lukas Ramlow & Benjamin Lindner, 2021. "Interspike interval correlations in neuron models with adaptation and correlated noise," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-35, August.
  • Handle: RePEc:plo:pcbi00:1009261
    DOI: 10.1371/journal.pcbi.1009261
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009261
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009261&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Corinne Teeter & Ramakrishnan Iyer & Vilas Menon & Nathan Gouwens & David Feng & Jim Berg & Aaron Szafer & Nicholas Cain & Hongkui Zeng & Michael Hawrylycz & Christof Koch & Stefan Mihalas, 2018. "Generalized leaky integrate-and-fire models classify multiple neuron types," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Rueda & Itziar Fernández & Yolanda Larriba & Alejandro Rodríguez-Collado, 2021. "The FMM Approach to Analyze Biomedical Signals: Theory, Software, Applications and Future," Mathematics, MDPI, vol. 9(10), pages 1-13, May.
    2. Julian Rossbroich & Daniel Trotter & John Beninger & Katalin Tóth & Richard Naud, 2021. "Linear-nonlinear cascades capture synaptic dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
    3. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.