Author
Listed:
- Salvatore Alaimo
- Rosaria Valentina Rapicavoli
- Gioacchino P Marceca
- Alessandro La Ferlita
- Oksana B Serebrennikova
- Philip N Tsichlis
- Bud Mishra
- Alfredo Pulvirenti
- Alfredo Ferro
Abstract
Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues’ physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. Here we propose PHENSIM, a computational tool using a systems biology approach to simulate how cell phenotypes are affected by the activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways. Our tool’s applications include predicting the outcome of drug administration, knockdown experiments, gene transduction, and exposure to exosomal cargo. Importantly, PHENSIM enables the user to make inferences on well-defined cell lines and includes pathway maps from three different model organisms. To assess our approach’s reliability, we built a benchmark from transcriptomics data gathered from NCBI GEO and performed four case studies on known biological experiments. Our results show high prediction accuracy, thus highlighting the capabilities of this methodology. PHENSIM standalone Java application is available at https://github.com/alaimos/phensim, along with all data and source codes for benchmarking. A web-based user interface is accessible at https://phensim.tech/.Author summary: Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues’ physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. In this context, ’in silico’ simulations can be extensively applied in massive scales, testing thousands of hypotheses under various conditions, which is usually experimentally infeasible. At present, many simulation models have become available. However, complex biological networks might pose challenges to their performance.
Suggested Citation
Salvatore Alaimo & Rosaria Valentina Rapicavoli & Gioacchino P Marceca & Alessandro La Ferlita & Oksana B Serebrennikova & Philip N Tsichlis & Bud Mishra & Alfredo Pulvirenti & Alfredo Ferro, 2021.
"PHENSIM: Phenotype Simulator,"
PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-21, June.
Handle:
RePEc:plo:pcbi00:1009069
DOI: 10.1371/journal.pcbi.1009069
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009069. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.