Author
Listed:
- Edward M Hill
- Benjamin D Atkins
- Matt J Keeling
- Louise Dyson
- Michael J Tildesley
Abstract
As part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. We use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create ‘COVID-secure’ workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. The progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. In the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.Author summary: As part of a collective effort to protect public health by disrupting viral transmission of SARS-CoV-2, businesses have implemented measures to minimise exposure to coronavirus in workplaces and premises open to the public. Adjustments in working practices can result in changes to patterns of interaction, altering the dynamics of viral spread. To assess the impact of workplace targeted non-pharmaceutical disease controls against epidemic spread of SARS-CoV-2 amongst a population of workers, we present a network-based model with layered contacts capturing multiple encounter settings (workplaces, households, social and other). Informed by UK data, the model accounts for work sector, workplace size and the division of time between work and home. We study three workplace focused interventions: (i) a specified fraction of each work sector working from home; (ii) temporally asynchronous work patterns; (iii) introduction of COVID-secure workplaces. We also examine the role of adherence to isolation and test and trace measures. Following isolation guidance and engaging with contact tracing alone is an effective tool to curb transmission, but is highly sensitive to adherence levels. Given the heterogeneity of demographic attributes across worker roles, we demonstrate the utility of a network model approach to investigate workplace-targeted control measures against infectious disease spread.
Suggested Citation
Edward M Hill & Benjamin D Atkins & Matt J Keeling & Louise Dyson & Michael J Tildesley, 2021.
"A network modelling approach to assess non-pharmaceutical disease controls in a worker population: An application to SARS-CoV-2,"
PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
Handle:
RePEc:plo:pcbi00:1009058
DOI: 10.1371/journal.pcbi.1009058
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009058. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.