Author
Listed:
- Huiling Zhang
- Zhendong Bei
- Wenhui Xi
- Min Hao
- Zhen Ju
- Konda Mani Saravanan
- Haiping Zhang
- Ning Guo
- Yanjie Wei
Abstract
Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions for intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized.Author summary: The amino acid sequence of a protein ultimately determines its tertiary structure, and the tertiary structure determines its function(s) and plays a key role in understanding biological processes and disease pathogenesis. Protein tertiary structure can be determined using experimental techniques such as cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography, which are very expensive and time-consuming. As an alternative, researchers are trying to use in silico methods to predict the 3D structures. Residue contact-assisted protein folding paves an avenue for sequence-based protein structure prediction and therefore has become one of the most challenging and promising problems in structural bioinformatics. Over the past years, contact prediction has undergone continuous evolution in techniques. Through a retrospective analysis of traditional machine learning /evolutionary coupling analysis methods/ consensus machine learning methods and a multi-perspective study on recently developed deep learning methods, we explore the most advanced contact predictors, pursue application scenarios for different methods, and seek prospective directions for further improvement. We anticipate that our study will serve as a practical and useful guide for the development of future approaches to contact prediction.
Suggested Citation
Huiling Zhang & Zhendong Bei & Wenhui Xi & Min Hao & Zhen Ju & Konda Mani Saravanan & Haiping Zhang & Ning Guo & Yanjie Wei, 2021.
"Evaluation of residue-residue contact prediction methods: From retrospective to prospective,"
PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-33, May.
Handle:
RePEc:plo:pcbi00:1009027
DOI: 10.1371/journal.pcbi.1009027
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009027. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.