IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008998.html
   My bibliography  Save this article

PRER: A patient representation with pairwise relative expression of proteins on biological networks

Author

Listed:
  • Halil İbrahim Kuru
  • Mustafa Buyukozkan
  • Oznur Tastan

Abstract

Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins’ expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks) (PRER). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein’s expression level with other proteins’ levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER’s performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER.Author summary: Cancer remains to be one of the most prevalent and challenging diseases to treat. Cancer is a complex disease with several disrupted molecular mechanisms at play. The protein expression level is a fundamental indicator of how the molecular mechanisms are altered in each tumor. Predicting patient survival based on the changes is essential for understanding the cancer mechanisms and arriving at patient-specific treatment plans. For this task, existing machine learning models are used, such as random forest survival, which requires a feature-based representation of each patient based on her tumors. Most of these models use the individual molecular quantities of the tumors. However, cancer is a complex disease in which molecular mechanisms are dysregulated in various ways. In this work, we present a new patient representation scheme in which we integrate each tumor’s protein expression levels with their neighboring proteins’ expression levels in a protein-protein interaction network to capture patient-specific dysregulation patterns. Our results suggest that proteins’ relative expressions are more predictive than their individual expressions. We also analyze which of the protein interactions are more predictive of patient survival. The identified set of important protein interactions can be potentially used for cancer prognosis.

Suggested Citation

  • Halil İbrahim Kuru & Mustafa Buyukozkan & Oznur Tastan, 2021. "PRER: A patient representation with pairwise relative expression of proteins on biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-20, May.
  • Handle: RePEc:plo:pcbi00:1008998
    DOI: 10.1371/journal.pcbi.1008998
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008998
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008998&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.