IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008818.html
   My bibliography  Save this article

Prediction of amphipathic helix—Membrane interactions with Rosetta

Author

Listed:
  • Alican Gulsevin
  • Jens Meiler

Abstract

Amphipathic helices have hydrophobic and hydrophilic/charged residues situated on oppo site faces of the helix. They can anchor peripheral membrane proteins to the membrane, be attached to integral membrane proteins, or exist as independent peptides. Despite the widespread presence of membrane-interacting amphipathic helices, there is no computational tool within Rosetta to model their interactions with membranes. In order to address this need, we developed the AmphiScan protocol with PyRosetta, which runs a grid search to find the most favorable position of an amphipathic helix with respect to the membrane. The performance of the algorithm was tested in benchmarks with the RosettaMembrane, ref2015_memb, and franklin2019 score functions on six engineered and 44 naturally-occurring amphipathic helices using membrane coordinates from the OPM and PDBTM databases, OREMPRO server, and MD simulations for comparison. The AmphiScan protocol predicted the coordinates of amphipathic helices within less than 3Å of the reference structures and identified membrane-embedded residues with a Matthews Correlation Constant (MCC) of up to 0.57. Overall, AmphiScan stands as fast, accurate, and highly-customizable protocol that can be pipelined with other Rosetta and Python applications.Author summary: Amphipathic helices are important targets as antibacterial peptides and as domains of membrane proteins that play a role in sensing the membrane environment. Understanding how amphipathic helices interact with membrane enables us to design better peptides and understand how membrane proteins use them to interact with their environment. However, there is a limited number of tools available for the modeling of amphipathic helices in membranes. Implicit membrane models can be used for this purpose as simplistic representations of the membrane environment. In this work, we developed the AmphiScan protocol that can be used to predict membrane coordinates of amphipathic helices starting with a helix structure in an implicit membrane environment. We benchmarked the performance of AmphiScan on engineered LK peptides, naturally-occurring amphipathic helices, and hydrophobic and hydrophilic peptides. Our approach provides a reliable and customizable tool to model amphipathic helix–membrane interactions, and pose a platform for the screening of amphipathic helix properties in silico.

Suggested Citation

  • Alican Gulsevin & Jens Meiler, 2021. "Prediction of amphipathic helix—Membrane interactions with Rosetta," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
  • Handle: RePEc:plo:pcbi00:1008818
    DOI: 10.1371/journal.pcbi.1008818
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008818
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008818&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.