Author
Listed:
- Martín Garrido-Rodriguez
- Daniel Lopez-Lopez
- Francisco M Ortuno
- María Peña-Chilet
- Eduardo Muñoz
- Marco A Calzado
- Joaquin Dopazo
Abstract
MIGNON is a workflow for the analysis of RNA-Seq experiments, which not only efficiently manages the estimation of gene expression levels from raw sequencing reads, but also calls genomic variants present in the transcripts analyzed. Moreover, this is the first workflow that provides a framework for the integration of transcriptomic and genomic data based on a mechanistic model of signaling pathway activities that allows a detailed biological interpretation of the results, including a comprehensive functional profiling of cell activity. MIGNON covers the whole process, from reads to signaling circuit activity estimations, using state-of-the-art tools, it is easy to use and it is deployable in different computational environments, allowing an optimized use of the resources available.Author summary: Currently, RNA massive sequencing RNA-seq is the most extensively used technique for gene expression profiling in a single assay. The output of RNA-seq experiments contains millions of sequences, generated from cDNA libraries produced by the retro-transcription of RNA samples, that need to be processed by computational methods to be transformed into meaningful biological information. Thus, a number of bioinformatic workflows and pipelines have been proposed to produce different types of gene expression measurements, including in some cases, functional annotations to facilitate biological interpretation. While most pipelines focus exclusively on transcriptional data, the ultimate activity of the resulting gene product also depends critically on its integrity. Although traditional hybridization-based transcriptomics methodologies (microarrays) miss this information, RNA-seq data also contains information on variants present in the transcripts that can affect the function of the gene product, which is systematically ignored by current RNA-seq pipelines. MIGNON is the first workflow able to perform an integrative analysis of transcriptomic and genomic data in the proper functional context, provided by a mechanistic model of signaling pathway activity, making thus the most of the information contained in RNA-Seq data. MIGNON is easy to use and to deploy and may become a valuable asset in fields such as personalized medicine.
Suggested Citation
Martín Garrido-Rodriguez & Daniel Lopez-Lopez & Francisco M Ortuno & María Peña-Chilet & Eduardo Muñoz & Marco A Calzado & Joaquin Dopazo, 2021.
"A versatile workflow to integrate RNA-seq genomic and transcriptomic data into mechanistic models of signaling pathways,"
PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-13, February.
Handle:
RePEc:plo:pcbi00:1008748
DOI: 10.1371/journal.pcbi.1008748
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.