Author
Listed:
- Vedant Sachdeva
- Thierry Mora
- Aleksandra M Walczak
- Stephanie E Palmer
Abstract
Responding to stimuli requires that organisms encode information about the external world. Not all parts of the input are important for behavior, and resource limitations demand that signals be compressed. Prediction of the future input is widely beneficial in many biological systems. We compute the trade-offs between representing the past faithfully and predicting the future using the information bottleneck approach, for input dynamics with different levels of complexity. For motion prediction, we show that, depending on the parameters in the input dynamics, velocity or position information is more useful for accurate prediction. We show which motion representations are easiest to re-use for accurate prediction in other motion contexts, and identify and quantify those with the highest transferability. For non-Markovian dynamics, we explore the role of long-term memory in shaping the internal representation. Lastly, we show that prediction in evolutionary population dynamics is linked to clustering allele frequencies into non-overlapping memories.Author summary: From catching a ball to building immunity, we rely on the ability of biological systems to incorporate past observations to make predictions about the future state of the environment. However, the success of these predictions is limited by environmental parameters and encoding capacities of the predictors. We explore these trade-offs in three systems: simple intertial motion, more complex motion with long-tailed temporal correlations, and mutating viral strains. We show that the velocity and position of a moving object should not be equally well-remembered in the biological systems internal representation, and identify the flexible “best-compromise” representations that are not optimal but remain predictable in a wide range of parameters regimes. In the evolutionary context, we find that the optimal predictive representations are discrete, reminiscent of immune strategies that cover the space of potential viruses.
Suggested Citation
Vedant Sachdeva & Thierry Mora & Aleksandra M Walczak & Stephanie E Palmer, 2021.
"Optimal prediction with resource constraints using the information bottleneck,"
PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
Handle:
RePEc:plo:pcbi00:1008743
DOI: 10.1371/journal.pcbi.1008743
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008743. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.