Author
Listed:
- Alexandre Oliveira
- Joana Rodrigues
- Eugénio Campos Ferreira
- Lígia Rodrigues
- Oscar Dias
Abstract
Acrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and β-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields. When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and β-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.Author summary: Acrylic acid is an economically important chemical compound due to its high market value. Nevertheless, the majority of acrylic acid consumed worldwide its produced from petroleum derivatives by a purely chemical process, which is not only expensive, but it also contributes towards environment deterioration. Hence, justifying the current need for sustainable novel production methods that allow higher profit margins. Ideally, to minimise production cost, the pathway should consist in the direct bio-based production from microbial feedstocks, such as Escherichia coli, but the current yields achieved are still too low to compete with conventional method. In this work, even though the glycerol pathway presented higher yields, we identified the malonyl-CoA route, when using glucose as carbon source, as having the most potential for industrial-scale production, since it is cheaper to implement. Furthermore, we also identified potential optimisation targets for all the tested pathways, that can help the bio-based method to compete with the conventional process.
Suggested Citation
Alexandre Oliveira & Joana Rodrigues & Eugénio Campos Ferreira & Lígia Rodrigues & Oscar Dias, 2021.
"A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli,"
PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
Handle:
RePEc:plo:pcbi00:1008704
DOI: 10.1371/journal.pcbi.1008704
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008704. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.