IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008538.html
   My bibliography  Save this article

Multiobjective optimization identifies cancer-selective combination therapies

Author

Listed:
  • Otto I Pulkkinen
  • Prson Gautam
  • Ville Mustonen
  • Tero Aittokallio

Abstract

Combinatorial therapies are required to treat patients with advanced cancers that have become resistant to monotherapies through rewiring of redundant pathways. Due to a massive number of potential drug combinations, there is a need for systematic approaches to identify safe and effective combinations for each patient, using cost-effective methods. Here, we developed an exact multiobjective optimization method for identifying pairwise or higher-order combinations that show maximal cancer-selectivity. The prioritization of patient-specific combinations is based on Pareto-optimization in the search space spanned by the therapeutic and nonselective effects of combinations. We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma. We experimentally validated many of the predictions in BRAF-V600E melanoma cell line, and the results suggest that one can improve selective inhibition of BRAF-V600E melanoma cells by combinatorial targeting of MAPK/ERK and other compensatory pathways using pairwise and third-order drug combinations. Our mechanism-agnostic optimization method is widely applicable to various cancer types, and it takes as input only measurements of a subset of pairwise drug combinations, without requiring target information or genomic profiles. Such data-driven approaches may become useful for functional precision oncology applications that go beyond the cancer genetic dependency paradigm to optimize cancer-selective combinatorial treatments.Author summary: Cancer is diagnosed in nearly 40% of people in the U.S at some point during their lifetimes. Despite decades of research to lower cancer incidence and mortality, cancer remains a leading cause of deaths worldwide. Therefore, new targeted therapies are required to further reduce the death rates and toxic effects of treatments. Here we developed a mathematical optimization framework for finding cancer-selective treatments that optimally use drugs and their combinations. The method uses multiobjective optimization to identify drug combinations that simultaneously show maximal therapeutic potential and minimal non-selectivity, to avoid severe side effects. Our systematic search approach is applicable to various cancer types and it enables optimization of combinations involving both targeted therapies as well as standard chemotherapies.

Suggested Citation

  • Otto I Pulkkinen & Prson Gautam & Ville Mustonen & Tero Aittokallio, 2020. "Multiobjective optimization identifies cancer-selective combination therapies," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-17, December.
  • Handle: RePEc:plo:pcbi00:1008538
    DOI: 10.1371/journal.pcbi.1008538
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008538
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008538&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.