IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008515.html
   My bibliography  Save this article

Modelling the impact of clot fragmentation on the microcirculation after thrombectomy

Author

Listed:
  • Wahbi K El-Bouri
  • Andrew MacGowan
  • Tamás I Józsa
  • Matthew J Gounis
  • Stephen J Payne

Abstract

Many ischaemic stroke patients who have a mechanical removal oftheir clot (thrombectomy) do not get reperfusion of tissue despitethe thrombus being removed. One hypothesis for this ‘no-reperfusion’ phenomenon is micro-emboli fragmenting off the large clot during thrombectomy and occluding smaller blood vessels downstream of the clot location. This is impossible to observe in-vivo and so we here develop an in-silico model based on in-vitro experiments to model the effect of micro-emboli on brain tissue. Through in-vitro experiments we obtain, under a variety of clot consistencies and thrombectomy techniques, micro-emboli distributions post-thrombectomy. Blood flow through the microcirculation is modelled for statistically accurate voxels of brain microvasculature including penetrating arterioles and capillary beds. A novel micro-emboli algorithm, informed by the experimental data, is used to simulate the impact of micro-emboli successively entering the penetrating arterioles and the capillary bed. Scaled-up blood flow parameters–permeability and coupling coefficients–are calculated under various conditions. We find that capillary beds are more susceptible to occlusions than the penetrating arterioles with a 4x greater drop in permeability per volume of vessel occluded. Individual microvascular geometries determine robustness to micro-emboli. Hard clot fragmentation leads to larger micro-emboli and larger drops in blood flow for a given number of micro-emboli. Thrombectomy technique has a large impact on clot fragmentation and hence occlusions in the microvasculature. As such, in-silico modelling of mechanical thrombectomy predicts that clot specific factors, interventional technique, and microvascular geometry strongly influence reperfusion of the brain. Micro-emboli are likely contributory to the phenomenon of no-reperfusion following successful removal of a major clot.Author summary: After an ischaemic stroke—one where a clot blocks a major artery in the brain—patients can undergo a procedure where the clot is removed mechanically via a catheter—a thrombectomy. This reopens the blocked vessel, yet some patients don’t achieve blood flow returning to their tissue downstream. One hypothesis for this phenomenon is that the clot fragments into smaller clots (called micro-emboli) which block smaller vessels downstream. However, this can’t be measured in patients due to the inability of clinical imaging resolving the micro-scale. We therefore develop a computational model here, based on experimental thrombectomy data, to quantify the impact of micro-emboli on blood flow in the brain after the removal of a clot. With this model, we found that micro-emboli are a likely contributor to the no-reflow phenomenon after a thrombectomy. Individual blood vessel geometries, clot composition, and thrombectomy technique all impacted the effect of micro-emboli on blood flow and should be taken into consideration to minimise the impact of micro-emboli in the brain. Furthermore, the computational model developed here allows us to now build large-scale models of blood flow in the brain, and hence simulate stroke and the impact of micro-emboli on the entire brain.

Suggested Citation

  • Wahbi K El-Bouri & Andrew MacGowan & Tamás I Józsa & Matthew J Gounis & Stephen J Payne, 2021. "Modelling the impact of clot fragmentation on the microcirculation after thrombectomy," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
  • Handle: RePEc:plo:pcbi00:1008515
    DOI: 10.1371/journal.pcbi.1008515
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008515
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008515&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.