Author
Listed:
- Daniel F Nino
- Daniel Djayakarsana
- Joshua N Milstein
Abstract
Single-molecule localization microscopy (SMLM) is a powerful tool for studying intracellular structure and macromolecular organization at the nanoscale. The increasingly massive pointillistic data sets generated by SMLM require the development of new and highly efficient quantification tools. Here we present FOCAL3D, an accurate, flexible and exceedingly fast (scaling linearly with the number of localizations) density-based algorithm for quantifying spatial clustering in large 3D SMLM data sets. Unlike DBSCAN, which is perhaps the most commonly employed density-based clustering algorithm, an optimum set of parameters for FOCAL3D may be objectively determined. We initially validate the performance of FOCAL3D on simulated datasets at varying noise levels and for a range of cluster sizes. These simulated datasets are used to illustrate the parametric insensitivity of the algorithm, in contrast to DBSCAN, and clustering metrics such as the F1 and Silhouette score indicate that FOCAL3D is highly accurate, even in the presence of significant background noise and mixed populations of variable sized clusters, once optimized. We then apply FOCAL3D to 3D astigmatic dSTORM images of the nuclear pore complex (NPC) in human osteosaracoma cells, illustrating both the validity of the parameter optimization and the ability of the algorithm to accurately cluster complex, heterogeneous 3D clusters in a biological dataset. FOCAL3D is provided as an open source software package written in Python.Author summary: We have developed an accurate, highly-efficient and flexible algorithm for quantifying spatial clustering in large, 3-dimensional single-molecule localization microscopy (SMLM) datasets. Our method, FOCAL3D, is provided as an open-source software package written in Python. FOCAL3D scales linearly with the number of localizations and the algorithmic parameters may be systematically optimized so that the resulting analysis is insensitive to variation over a range of parameter choices. We initially validate the performance and parametric insensitivity of FOCAL3D on simulated datasets, then apply the algorithm to 3-dimensional, astigmatic dSTORM images of the nuclear pore complex in human osteosarcoma cells.
Suggested Citation
Daniel F Nino & Daniel Djayakarsana & Joshua N Milstein, 2020.
"FOCAL3D: A 3-dimensional clustering package for single-molecule localization microscopy,"
PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-19, December.
Handle:
RePEc:plo:pcbi00:1008479
DOI: 10.1371/journal.pcbi.1008479
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008479. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.