IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008459.html
   My bibliography  Save this article

A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase

Author

Listed:
  • Lindsey S Brown
  • Francis J Doyle III

Abstract

The molecular circadian clock is driven by interlocked transcriptional-translational feedback loops, producing oscillations in the expressions of genes and proteins to coordinate the timing of biological processes throughout the body. Modeling this system gives insight into the underlying processes driving oscillations in an activator-repressor architecture and allows us to make predictions about how to manipulate these oscillations. The knockdown or upregulation of different cellular components using small molecules can disrupt these rhythms, causing a phase shift, and we aim to determine the dosing of such molecules with a model-based control strategy. Mathematical models allow us to predict the phase response of the circadian clock to these interventions and time them appropriately but only if the model has enough physiological detail to describe these responses while maintaining enough simplicity for online optimization. We build a control-relevant, physiologically-based model of the two main feedback loops of the mammalian molecular clock, which provides sufficient detail to consider multi-input control. Our model captures experimentally observed peak to trough ratios, relative abundances, and phase differences in the model species, and we independently validate this model by showing that the in silico model reproduces much of the behavior that is observed in vitro under genetic knockout conditions. Because our model produces valid phase responses, it can be used in a model predictive control algorithm to determine inputs to shift phase. Our model allows us to consider multi-input control through small molecules that act on both feedback loops, and we find that changes to the parameters of the negative feedback loop are much stronger inputs for shifting phase. The strongest inputs predicted by this model provide targets for new experimental small molecules and suggest that the function of the positive feedback loop is to stabilize the oscillations while linking the circadian system to other clock-controlled processes.Author summary: The circadian clock helps to regulate many biological functions, including the sleep-wake cycle, metabolism, the cardiovascular system, and the immune response, so we can promote better health by aligning the internal body clock to the phase of the external environment. At the cellular level, the circadian clock is driven by the interactions of a core set of genes and proteins, presenting inputs to manipulate the clock. Mathematical models allow us to predict which inputs can best be used to shift the internal clock to align with the environment. In this paper, we develop a model, consisting of a system of differential equations, to describe the molecular level components which drive circadian rhythms and test the model to show it captures experimental observations. We then use this model to determine what parametric changes have the strongest resetting effect on the clock, suggesting which mechanisms the development of new experimental small molecules should target to most efficiently shift circadian phase. We demonstrate the efficacy of this approach in a model predictive control simulation. Although we build a model specific to the circadian clock, the techniques we describe for modeling and control of the circadian oscillator can be applied to many oscillating systems.

Suggested Citation

  • Lindsey S Brown & Francis J Doyle III, 2020. "A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-25, November.
  • Handle: RePEc:plo:pcbi00:1008459
    DOI: 10.1371/journal.pcbi.1008459
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008459
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008459&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neda Bagheri & Jörg Stelling & Francis J Doyle III, 2008. "Circadian Phase Resetting via Single and Multiple Control Targets," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirill Serkh & Daniel B Forger, 2014. "Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.