Author
Listed:
- Julienne LaChance
- Daniel J Cohen
Abstract
Fluorescence reconstruction microscopy (FRM) describes a class of techniques where transmitted light images are passed into a convolutional neural network that then outputs predicted epifluorescence images. This approach enables many benefits including reduced phototoxicity, freeing up of fluorescence channels, simplified sample preparation, and the ability to re-process legacy data for new insights. However, FRM can be complex to implement, and current FRM benchmarks are abstractions that are difficult to relate to how valuable or trustworthy a reconstruction is. Here, we relate the conventional benchmarks and demonstrations to practical and familiar cell biology analyses to demonstrate that FRM should be judged in context. We further demonstrate that it performs remarkably well even with lower-magnification microscopy data, as are often collected in screening and high content imaging. Specifically, we present promising results for nuclei, cell-cell junctions, and fine feature reconstruction; provide data-driven experimental design guidelines; and provide researcher-friendly code, complete sample data, and a researcher manual to enable more widespread adoption of FRM.Author summary: Biological research often requires using fluorescence imaging to detect fluorescently labeled proteins within a cell, but this kind of imaging is inherently toxic and complicates the experimental design and imaging. Advances in machine learning and artificial intelligence can help with these issues by allowing researchers to train neural networks to detect some of these proteins in a transmitted light image without needing fluorescence data. We call this class of technique Fluorescence Reconstruction Microscopy (FRM) and work here to make it more accessible to the end-users in three key regards. First, we extend FRM to challenging low-magnification, low-resolution microscopy as is needed in increasingly popular high content screening. Second, we uniquely relate FRM performance to every-day metrics of value to the end-user, such as cell counts, size, and feature detection rather than to abstract performance metrics from computer vision. Third, we provide accessible software tools and characterizations of FRM intended to aid researchers in testing and incorporating FRM into their own research.
Suggested Citation
Julienne LaChance & Daniel J Cohen, 2020.
"Practical fluorescence reconstruction microscopy for large samples and low-magnification imaging,"
PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-24, December.
Handle:
RePEc:plo:pcbi00:1008443
DOI: 10.1371/journal.pcbi.1008443
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.