Author
Listed:
- Charles-Elie Rabier
- Vincent Berry
- Marnus Stoltz
- João D Santos
- Wensheng Wang
- Jean-Christophe Glaszmann
- Fabio Pardi
- Celine Scornavacca
Abstract
For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software.Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.Author summary: Nowadays, to make the best use of the vast amount of genomic data at our disposal, there is a real need for methods able to model complex biological mechanisms such as hybridization and introgression. Understanding such mechanisms can help geneticists to elaborate strategies in crop improvement that may help reducing poverty and dealing with climate change. However, reconstructing such evolution scenarios is challenging. Indeed, the inference of phylogenetic networks, which explicitly model reticulation events such as hybridization and introgression, requires high computational resources. Then, on large data sets, biologists generally deduce reticulation events indirectly using species tree inference tools.
Suggested Citation
Charles-Elie Rabier & Vincent Berry & Marnus Stoltz & João D Santos & Wensheng Wang & Jean-Christophe Glaszmann & Fabio Pardi & Celine Scornavacca, 2021.
"On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo,"
PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-40, September.
Handle:
RePEc:plo:pcbi00:1008380
DOI: 10.1371/journal.pcbi.1008380
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.