IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008333.html
   My bibliography  Save this article

Refractory density model of cortical direction selectivity: Lagged-nonlagged, transient-sustained, and On-Off thalamic neuron-based mechanisms and intracortical amplification

Author

Listed:
  • Anton Chizhov
  • Natalia Merkulyeva

Abstract

A biophysically detailed description of the mechanisms of the primary vision is still being developed. We have incorporated a simplified, filter-based description of retino-thalamic visual signal processing into the detailed, conductance-based refractory density description of the neuronal population activity of the primary visual cortex. We compared four mechanisms of the direction selectivity (DS), three of them being based on asymmetrical projections of different types of thalamic neurons to the cortex, distinguishing between (i) lagged and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mechanism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions between orientation columns. The simulations of the cortical response to moving gratings have verified that first three mechanisms provide DS to an extent compared with experimental data and that the biophysical model realistically reproduces characteristics of the visual cortex activity, such as membrane potential, firing rate, and synaptic conductances. The proposed model reveals the difference between the mechanisms of both the intact and the silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but significant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives from the nonlinear interactions within the orientation map. Results of simulations can help to identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive biophysical modeling of the primary visual system in the frameworks of the population rate coding concept.Author summary: A major mechanism that underlies tuning of cortical neurons to the direction of a moving stimulus is still debated. Considering the visual cortex structured with orientation-selective columns, we have realized and compared in our biophysically detailed mathematical model four hypothetical mechanisms of the direction selectivity (DS) known from experiments. The present model accomplishes our previous model that was tuned to experimental data on excitability in slices and reproduces orientation tuning effects in vivo. In simulations, we have found that the convergence of inputs from so-called transient and sustained (or lagged and nonlagged) thalamic neurons in the cortex provides an initial bias for DS, whereas cortical interactions amplify the tuning. In the absence of any bias, DS emerges as an epiphenomenon of the orientation map. In the case of a biased convergence of On- and Off- thalamic inputs, DS emerges with the help of the intracortical interactions on the orientation map, also. Thus, we have proposed a comprehensive description of the primary vision and revealed characteristic features of different mechanisms of DS in the visual cortex with columnar structure.

Suggested Citation

  • Anton Chizhov & Natalia Merkulyeva, 2020. "Refractory density model of cortical direction selectivity: Lagged-nonlagged, transient-sustained, and On-Off thalamic neuron-based mechanisms and intracortical amplification," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-42, October.
  • Handle: RePEc:plo:pcbi00:1008333
    DOI: 10.1371/journal.pcbi.1008333
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008333
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008333&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.