Author
Listed:
- Edward M Hill
- Stavros Petrou
- Henry Forster
- Simon de Lusignan
- Ivelina Yonova
- Matt J Keeling
Abstract
For infectious disease prevention, policy-makers are typically required to base policy decisions in light of operational and monetary restrictions, prohibiting implementation of all candidate interventions. To inform the evidence-base underpinning policy decision making, mathematical and health economic modelling can be a valuable constituent.Applied to England, this study aims to identify the optimal target age groups when extending a seasonal influenza vaccination programme of at-risk individuals to those individuals at low risk of developing complications following infection. To perform this analysis, we utilise an age- and strain-structured transmission model that includes immunity propagation mechanisms which link prior season epidemiological outcomes to immunity at the beginning of the following season. Making use of surveillance data from the past decade in conjunction with our dynamic model, we simulate transmission dynamics of seasonal influenza in England from 2012 to 2018. We infer that modified susceptibility due to natural infection in the previous influenza season is the only immunity propagation mechanism to deliver a non-negligible impact on the transmission dynamics. Further, we discerned case ascertainment to be higher for young infants compared to adults under 65 years old, and uncovered a decrease in case ascertainment as age increased from 65 to 85 years of age.Our health economic appraisal sweeps vaccination age space to determine threshold vaccine dose prices achieving cost-effectiveness under differing paired strategies. In particular, we model offering vaccination to all those low-risk individuals younger than a given age (but no younger than two years old) and all low-risk individuals older than a given age, while maintaining vaccination of at-risk individuals of any age. All posited strategies were deemed cost-effective. In general, the addition of low-risk vaccination programmes whose coverage encompassed children and young adults (aged 20 and below) were highly cost-effective. The inclusion of elder age-groups to the low-risk programme typically lessened the cost-effectiveness. Notably, elderly-centric programmes vaccinating from 65-75 years and above had the least permitted expense per vaccine.Author summary: Vaccination is an established method to provide protection against seasonal influenza and its complications. Yet, a need to administer an updated vaccine on an annual basis presents significant operational challenges and sizeable costs. Consequently, policy makers typically have to decide how to deploy a finite amount of resource in a cost-effective manner. A combination of mathematical and health economic modelling can be used to address such a question. Here, we developed an age- and strain-structured mathematical model for seasonal influenza transmission dynamics that incorporates mechanisms for immunity propagation, which we used to reconstruct transmission dynamics of seasonal influenza in England from 2012 to 2018.
Suggested Citation
Edward M Hill & Stavros Petrou & Henry Forster & Simon de Lusignan & Ivelina Yonova & Matt J Keeling, 2020.
"Optimising age coverage of seasonal influenza vaccination in England: A mathematical and health economic evaluation,"
PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-32, October.
Handle:
RePEc:plo:pcbi00:1008278
DOI: 10.1371/journal.pcbi.1008278
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Jae-Won Yun & Min Joo Choi & Gyeong-Seon Shin & Jae-Ok Lim & Ji Yun Noh & Yun-Kyung Kim & Joon Young Song & Woo Joo Kim & Sang-Eun Choi & Hee Jin Cheong, 2019.
"Cost-effectiveness of influenza vaccine strategies for the elderly in South Korea,"
PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.