IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008108.html
   My bibliography  Save this article

Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures

Author

Listed:
  • Bo Chen
  • Wei Xu

Abstract

Existing models for assessing microbiome sequencing such as operational taxonomic units (OTUs) can only test predictors’ effects on OTUs. There is limited work on how to estimate the correlations between multiple OTUs and incorporate such relationship into models to evaluate longitudinal OTU measures. We propose a novel approach to estimate OTU correlations based on their taxonomic structure, and apply such correlation structure in Generalized Estimating Equations (GEE) models to estimate both predictors’ effects and OTU correlations. We develop a two-part Microbiome Taxonomic Longitudinal Correlation (MTLC) model for multivariate zero-inflated OTU outcomes based on the GEE framework. In addition, longitudinal and other types of repeated OTU measures are integrated in the MTLC model. Extensive simulations have been conducted to evaluate the performance of the MTLC method. Compared with the existing methods, the MTLC method shows robust and consistent estimation, and improved statistical power for testing predictors’ effects. Lastly we demonstrate our proposed method by implementing it into a real human microbiome study to evaluate the obesity on twins.Author summary: Human microbiome sequencing data analysis has been a fast growing area of genomic research in recent years. Although there have been several works for detecting predictors on a single operational taxonomic unit (OTU) or multiple OTUs simultaneously, there is limited work on how to estimate the correlations between multiple OTUs and incorporate such relationship into models to evaluate longitudinal OTU measures. Here we propose a novel approach to estimate OTU correlations based on their taxonomic structure after integrating longitudinal and other types of repeated OTU measures, and apply such correlation structure in Generalized Estimating Equations (GEE) models to estimate both predictors’ effects and OTU correlations. The method is theoretically sound and practically easy to implement, and we provide corroborating evidence from simulation and a real human microbiome study.

Suggested Citation

  • Bo Chen & Wei Xu, 2020. "Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-22, September.
  • Handle: RePEc:plo:pcbi00:1008108
    DOI: 10.1371/journal.pcbi.1008108
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008108
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008108&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lizhen Xu & Andrew D Paterson & Williams Turpin & Wei Xu, 2015. "Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mozhaeva, Irina, 2022. "Inequalities in utilization of institutional care among older people in Estonia," Health Policy, Elsevier, vol. 126(7), pages 704-714.
    2. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    3. Ying Jiang & Linghan Zhang & Junyi Zhang, 2019. "Energy consumption by rural migrant workers and urban residents with a hukou in China: quality-of-life-related factors and built environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1431-1453, December.
    4. Dongyang Yang & Wei Xu, 2023. "Estimation of Mediation Effect on Zero-Inflated Microbiome Mediators," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    5. Tianchen Xu & Ryan T. Demmer & Gen Li, 2021. "Zero‐inflated Poisson factor model with application to microbiome read counts," Biometrics, The International Biometric Society, vol. 77(1), pages 91-101, March.
    6. Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
    7. Cindy Xin Feng, 2021. "A comparison of zero-inflated and hurdle models for modeling zero-inflated count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-19, December.
    8. Mei Dong & Longhai Li & Man Chen & Anthony Kusalik & Wei Xu, 2020. "Predictive analysis methods for human microbiome data with application to Parkinson’s disease," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.