IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008061.html
   My bibliography  Save this article

Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds

Author

Listed:
  • Brian Coventry
  • David Baker

Abstract

In aqueous solution, polar groups make hydrogen bonds with water, and hence burial of such groups in the interior of a protein is unfavorable unless the loss of hydrogen bonds with water is compensated by formation of new ones with other protein groups. For this reason, buried “unsatisfied” polar groups making no hydrogen bonds are very rare in proteins. Efficiently representing the energetic cost of unsatisfied hydrogen bonds with a pairwise-decomposable energy term during protein design is challenging since whether or not a group is satisfied depends on all of its neighbors. Here we describe a method for assigning a pairwise-decomposable energy to sidechain rotamers such that following combinatorial sidechain packing, buried unsaturated polar atoms are penalized. The penalty can be any quadratic function of the number of unsatisfied polar groups, and can be computed very rapidly. We show that inclusion of this term in Rosetta sidechain packing calculations substantially reduces the number of buried unsatisfied polar groups.Author summary: We present an algorithm that fits into existing protein design software that allows researchers to penalize unsatisfied polar atoms in protein structures during design. These polar atoms usually make hydrogen-bonds to other polar atoms or water molecules and the absence of such interactions leaves them unsatisfied energetically. Penalizing this condition is tricky because protein design software only looks at pairs of amino acids when considering which amino acids to choose. Current approaches to solve this problem use additive approaches where satisfaction or unsatisfaction is approximated on a continuous scale; however, in reality, satisfaction or unsatisfaction is an all-or-none condition. The simplest all-or-none method is to penalize polar atoms for simply existing and then to give a bonus any time they are satisfied. This fails when two different amino acids satisfy the same atom; the pairwise nature of the protein design software will double count the satisfaction bonus. Here we show that by anticipating the situation where two amino acids satisfy the same polar atom, we can apply a penalty to the two amino acids in advance and assume the polar atom will be there. This scheme correctly penalizes unsatisfied polar atoms and does not fall victim to overcounting.

Suggested Citation

  • Brian Coventry & David Baker, 2021. "Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1008061
    DOI: 10.1371/journal.pcbi.1008061
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008061
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008061&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.