IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008040.html
   My bibliography  Save this article

iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding

Author

Listed:
  • Huiyuan Chen
  • Feixiong Cheng
  • Jing Li

Abstract

Computational drug repositioning and drug-target prediction have become essential tasks in the early stage of drug discovery. In previous studies, these two tasks have often been considered separately. However, the entities studied in these two tasks (i.e., drugs, targets, and diseases) are inherently related. On one hand, drugs interact with targets in cells to modulate target activities, which in turn alter biological pathways to promote healthy functions and to treat diseases. On the other hand, both drug repositioning and drug-target prediction involve the same drug feature space, which naturally connects these two problems and the two domains (diseases and targets). By using the wisdom of the crowds, it is possible to transfer knowledge from one of the domains to the other. The existence of relationships among drug-target-disease motivates us to jointly consider drug repositioning and drug-target prediction in drug discovery. In this paper, we present a novel approach called iDrug, which seamlessly integrates drug repositioning and drug-target prediction into one coherent model via cross-network embedding. In particular, we provide a principled way to transfer knowledge from these two domains and to enhance prediction performance for both tasks. Using real-world datasets, we demonstrate that iDrug achieves superior performance on both learning tasks compared to several state-of-the-art approaches. Our code and datasets are available at: https://github.com/Case-esaC/iDrug.Author summary: Traditional high-throughput techniques for drug discovery are often expensive, time-consuming, and with high failure rates. Computational drug repositioning and drug-target prediction have thus become essential tasks in the early stage drug discovery. The emergence of large-scale heterogeneous biological networks has offered unprecedented opportunities for developing machine learning approaches to identify novel drug-disease or drug-target interactions. However, most existing works focused either on the drug-disease network or on the drug-target network, thus failed to capture the inherent dependencies between these two networks. These two biological networks are naturally connected since they involve the same drug feature space. In our opinion, ignoring this rich source of information is a major shortcoming of some existing works. In this paper, we present a novel approach called iDrug, which seamlessly integrates the drug-disease network and the drug-target network into one coherent model via cross-network embedding. As a result, iDrug is able to take full usage of the knowledge within these two biological networks to better exploit new biomedical insights of drug-target-disease. Therefore, iDrug has broad applications in drug discovery.

Suggested Citation

  • Huiyuan Chen & Feixiong Cheng & Jing Li, 2020. "iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-20, July.
  • Handle: RePEc:plo:pcbi00:1008040
    DOI: 10.1371/journal.pcbi.1008040
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008040
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008040&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.