IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007973.html
   My bibliography  Save this article

XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization

Author

Listed:
  • Will Xiao
  • Gabriel Kreiman

Abstract

A longstanding question in sensory neuroscience is what types of stimuli drive neurons to fire. The characterization of effective stimuli has traditionally been based on a combination of intuition, insights from previous studies, and luck. A new method termed XDream (EXtending DeepDream with real-time evolution for activation maximization) combined a generative neural network and a genetic algorithm in a closed loop to create strong stimuli for neurons in the macaque visual cortex. Here we extensively and systematically evaluate the performance of XDream. We use ConvNet units as in silico models of neurons, enabling experiments that would be prohibitive with biological neurons. We evaluated how the method compares to brute-force search, and how well the method generalizes to different neurons and processing stages. We also explored design and parameter choices. XDream can efficiently find preferred features for visual units without any prior knowledge about them. XDream extrapolates to different layers, architectures, and developmental regimes, performing better than brute-force search, and often better than exhaustive sampling of >1 million images. Furthermore, XDream is robust to choices of multiple image generators, optimization algorithms, and hyperparameters, suggesting that its performance is locally near-optimal. Lastly, we found no significant advantage to problem-specific parameter tuning. These results establish expectations and provide practical recommendations for using XDream to investigate neural coding in biological preparations. Overall, XDream is an efficient, general, and robust algorithm for uncovering neuronal tuning preferences using a vast and diverse stimulus space. XDream is implemented in Python, released under the MIT License, and works on Linux, Windows, and MacOS.

Suggested Citation

  • Will Xiao & Gabriel Kreiman, 2020. "XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1007973
    DOI: 10.1371/journal.pcbi.1007973
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007973
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007973&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin Conwell & Jacob S. Prince & Kendrick N. Kay & George A. Alvarez & Talia Konkle, 2024. "A large-scale examination of inductive biases shaping high-level visual representation in brains and machines," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.