IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007912.html
   My bibliography  Save this article

bigPint: A Bioconductor visualization package that makes big data pint-sized

Author

Listed:
  • Lindsay Rutter
  • Dianne Cook

Abstract

Interactive data visualization is imperative in the biological sciences. The development of independent layers of interactivity has been in pursuit in the visualization community. We developed bigPint, a data visualization package available on Bioconductor under the GPL-3 license (https://bioconductor.org/packages/release/bioc/html/bigPint.html). Our software introduces new visualization technology that enables independent layers of interactivity using Plotly in R, which aids in the exploration of large biological datasets. The bigPint package presents modernized versions of scatterplot matrices, volcano plots, and litre plots through the implementation of layered interactivity. These graphics have detected normalization issues, differential expression designation problems, and common analysis errors in public RNA-sequencing datasets. Researchers can apply bigPint graphics to their data by following recommended pipelines written in reproducible code in the user manual. In this paper, we explain how we achieved the independent layers of interactivity that are behind bigPint graphics. Pseudocode and source code are provided. Computational scientists can leverage our open-source code to expand upon our layered interactive technology and/or apply it in new ways toward other computational biology tasks.Author summary: Biological disciplines face the challenge of increasingly large and complex data. One necessary approach toward eliciting information is data visualization. Newer visualization tools incorporate interactive capabilities that allow scientists to extract information more efficiently than static counterparts. In this paper, we introduce technology that allows multiple independent layers of interactive visualization written in open-source code. This technology can be repurposed across various biological problems. Here, we apply this technology to RNA-sequencing data, a popular next-generation sequencing approach that provides snapshots of RNA quantity in biological samples at given moments in time. It can be used to investigate cellular differences between health and disease, cellular changes in response to external stimuli, and additional biological inquiries. RNA-sequencing data is large, noisy, and biased. It requires sophisticated normalization. The most popular open-source RNA-sequencing data analysis software focuses on models, with little emphasis on integrating effective visualization tools. This is despite sound evidence that RNA-sequencing data is most effectively explored using graphical and numerical approaches in a complementary fashion. The software we introduce can make it easier for researchers to use models and visuals in an integrated fashion during RNA-sequencing data analysis.

Suggested Citation

  • Lindsay Rutter & Dianne Cook, 2020. "bigPint: A Bioconductor visualization package that makes big data pint-sized," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-21, June.
  • Handle: RePEc:plo:pcbi00:1007912
    DOI: 10.1371/journal.pcbi.1007912
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007912
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007912&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.