IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007859.html
   My bibliography  Save this article

Decoding the language of microbiomes using word-embedding techniques, and applications in inflammatory bowel disease

Author

Listed:
  • Christine A Tataru
  • Maude M David

Abstract

Microbiomes are complex ecological systems that play crucial roles in understanding natural phenomena from human disease to climate change. Especially in human gut microbiome studies, where collecting clinical samples can be arduous, the number of taxa considered in any one study often exceeds the number of samples ten to one hundred-fold. This discrepancy decreases the power of studies to identify meaningful differences between samples, increases the likelihood of false positive results, and subsequently limits reproducibility. Despite the vast collections of microbiome data already available, biome-specific patterns of microbial structure are not currently leveraged to inform studies. Here, we derive microbiome-level properties by applying an embedding algorithm to quantify taxon co-occurrence patterns in over 18,000 samples from the American Gut Project (AGP) microbiome crowdsourcing effort. We then compare the predictive power of models trained using properties, normalized taxonomic count data, and another commonly used dimensionality reduction method, Principal Component Analysis in categorizing samples from individuals with inflammatory bowel disease (IBD) and healthy controls. We show that predictive models trained using property data are the most accurate, robust, and generalizable, and that property-based models can be trained on one dataset and deployed on another with positive results. Furthermore, we find that properties correlate significantly with known metabolic pathways. Using these properties, we are able to extract known and new bacterial metabolic pathways associated with inflammatory bowel disease across two completely independent studies. By providing a set of pre-trained embeddings, we allow any V4 16S amplicon study to apply the publicly informed properties to increase the statistical power, reproducibility, and generalizability of analysis.Author summary: The gut microbiome in humans has been implicated in a spectrum of diseases including inflammatory bowel disease, anxiety, depression, and Parkinson’s Disease, but thus far the associations between qualities of the gut microbiome and host symptoms are often not consistent across datasets. This may be because individual microbiome studies generally contain relatively small sample sizes, because some microbes are present in some populations but not others, and because microbial metabolism is dependent on the environmental context at hand. At the same time, there is a plethora of publicly accessible data describing the gut microbiome compositions of thousands of individuals in addition to their disease status, dietary habits, and lifestyle choices. We have employed a word embedding algorithm to map gut microbes from massive public datasets to vectors of real numbers which then represent relationships between microbes, or microbe-microbe co-occurrence patterns. We then use this mapping to learn more about what the gut microbiome of individuals with inflammatory bowel disease looks like, and find that mapping microbes to their vectors allows us to generalize results from one population to another more accurately.

Suggested Citation

  • Christine A Tataru & Maude M David, 2020. "Decoding the language of microbiomes using word-embedding techniques, and applications in inflammatory bowel disease," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-25, May.
  • Handle: RePEc:plo:pcbi00:1007859
    DOI: 10.1371/journal.pcbi.1007859
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007859
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007859&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.