IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007855.html
   My bibliography  Save this article

Shape-preserving elastic solid models of macromolecules

Author

Listed:
  • Guang Song

Abstract

Mass-spring models have been a standard approach in molecular modeling for the last few decades, such as elastic network models (ENMs) that are widely used for normal mode analysis. In this work, we present a vastly different elastic solid model (ESM) of macromolecules that shares the same simplicity and efficiency as ENMs in producing the equilibrium dynamics and moreover, offers some significant new features that may greatly benefit the research community. ESM is different from ENM in that it treats macromolecules as elastic solids. Our particular version of ESM presented in this work, named αESM, captures the shape of a given biomolecule most economically using alpha shape, a well-established technique from the computational geometry community. Consequently, it can produce most economical coarse-grained models while faithfully preserving the shape and thus makes normal mode computations and visualization of extremely large complexes more manageable. Secondly, as a solid model, ESM’s close link to finite element analysis renders it ideally suited for studying mechanical responses of macromolecules under external force. Lastly, we show that ESM can be applied also to structures without atomic coordinates such as those from cryo-electron microscopy. The complete MATLAB code of αESM is provided.Author summary: Mass-spring models have been a standard approach in classical molecular modeling where atoms are modeled as spheres with a mass and their interactions modeled as springs. The models have been extremely successful. Thinking ahead, however, as molecular systems of our interest grow more quickly in size or dimension than what our computation resources can keep up with, some adjustments in methodology are timely. This work presents a vastly different elastic solid model (ESM) of macromolecules that shares the same simplicity and efficiency as mass-spring models in producing the equilibrium dynamics and moreover, offers some unique features that make it suitable for much larger systems. ESM is different from ENMs in that it treats macromolecules as elastic solids. Our particular version of ESM model presented in this work, named αESM, captures the shape of a given biomolecule most economically using alpha shape, a well-established technique from the computational geometry community. Consequently, it can produce most economical coarse-grained models while faithfully preserving the shape. ESM can be applied also to structures without atomic coordinates such as those from cryo-electron microscopy.

Suggested Citation

  • Guang Song, 2020. "Shape-preserving elastic solid models of macromolecules," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-24, May.
  • Handle: RePEc:plo:pcbi00:1007855
    DOI: 10.1371/journal.pcbi.1007855
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007855
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007855&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.