Author
Listed:
- Sean M Cavany
- Guido España
- Alun L Lloyd
- Lance A Waller
- Uriel Kitron
- Helvio Astete
- William H Elson
- Gonzalo M Vazquez-Prokopec
- Thomas W Scott
- Amy C Morrison
- Robert C Reiner Jr.
- T Alex Perkins
Abstract
Recent years have seen rising incidence of dengue and large outbreaks of Zika and chikungunya, which are all caused by viruses transmitted by Aedes aegypti mosquitoes. In most settings, the primary intervention against Aedes-transmitted viruses is vector control, such as indoor, ultra-low volume (ULV) spraying. Targeted indoor residual spraying (TIRS) has the potential to more effectively impact Aedes-borne diseases, but its implementation requires careful planning and evaluation. The optimal time to deploy these interventions and their relative epidemiological effects are, however, not well understood. We used an agent-based model of dengue virus transmission calibrated to data from Iquitos, Peru to assess the epidemiological effects of these interventions under differing strategies for deploying them. Specifically, we compared strategies where spray application was initiated when incidence rose above a threshold based on incidence in recent years to strategies where spraying occurred at the same time(s) each year. In the absence of spraying, the model predicted 361,000 infections [inter-quartile range (IQR): 347,000–383,000] in the period 2000–2010. The ULV strategy with the fewest median infections was spraying twice yearly, in March and October, which led to a median of 172,000 infections [IQR: 158,000–183,000], a 52% reduction from baseline. Compared to spraying once yearly in September, the best threshold-based strategy utilizing ULV had fewer median infections (254,000 vs. 261,000), but required more spraying (351 vs. 274 days). For TIRS, the best strategy was threshold-based, which led to the fewest infections of all strategies tested (9,900; [IQR: 8,720–11,400], a 94% reduction), and required fewer days spraying than the equivalent ULV strategy (280). Although spraying twice each year is likely to avert the most infections, our results indicate that a threshold-based strategy can become an alternative to better balance the translation of spraying effort into impact, particularly if used with a residual insecticide.Author summary: Over half of the world’s population is at risk of infection by dengue virus (DENV) from Aedes aegypti mosquitoes. While most infected people experience mild or asymptomatic infections, dengue can cause severe symptoms, such as hemorrhage, shock, and death. A vaccine against dengue exists, but it can increase the risk of severe disease in people who have not been previously infected by one of the four DENV serotypes. In many places, therefore, the best currently available way to prevent outbreaks is by controlling the mosquito population. Our study used a simulation model to explore alternative strategies for deploying insecticide in the city of Iquitos in the Peruvian Amazon. Our simulations closely matched empirical patterns from studies of dengue's ecology and epidemiology in Iquitos, such as mosquito population dynamics, human household structure, demography, human and mosquito movement, and virus transmission. Our results indicate that an insecticide that has a long-lasting, residual effect will have the biggest impact on reducing DENV transmission. For non-residual insecticides, we find that it is best to begin spraying close to the start of the dengue transmission season, as mosquito populations can rebound quickly and resume previous levels of transmission.
Suggested Citation
Sean M Cavany & Guido España & Alun L Lloyd & Lance A Waller & Uriel Kitron & Helvio Astete & William H Elson & Gonzalo M Vazquez-Prokopec & Thomas W Scott & Amy C Morrison & Robert C Reiner Jr. & T A, 2020.
"Optimizing the deployment of ultra-low volume and indoor residual spraying for dengue outbreak response,"
PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-28, April.
Handle:
RePEc:plo:pcbi00:1007743
DOI: 10.1371/journal.pcbi.1007743
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007743. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.