IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007728.html
   My bibliography  Save this article

Buffering and total calcium levels determine the presence of oscillatory regimes in cardiac cells

Author

Listed:
  • Miquel Marchena
  • Blas Echebarria
  • Yohannes Shiferaw
  • Enrique Alvarez-Lacalle

Abstract

Calcium oscillations and waves induce depolarization in cardiac cells which are believed to cause life-threathening arrhythimas. In this work, we study the conditions for the appearance of calcium oscillations in both a detailed subcellular model of calcium dynamics and a minimal model that takes into account just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic changes and the interaction with the action potential we consider the somewhat artificial condition of a cell without pacing and with no calcium exchange with the extracellular medium. Both the full subcellular model and the minimal model present the same scenarios depending on the calcium load: two stationary states, one with closed ryanodine receptors (RyR) and most calcium in the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a depleted SR. In between, calcium oscillations may appear. The robustness of these oscillations is determined by the amount of calsequestrin (CSQ). The lack of this buffer in the SR enhances the appearance of oscillations. The minimal model allows us to relate the stability of the oscillating state to the nullcline structure of the system, and find that its range of existence is bounded by a homoclinic and a Hopf bifurcation, resulting in a sudden transition to the oscillatory regime as the cell calcium load is increased. Adding a small amount of noise to the RyR behavior increases the parameter region where oscillations appear and provides a gradual transition from the resting state to the oscillatory regime, as observed in the subcellular model and experimentally.Author summary: In cardiac cells, calcium plays a very important role. An increase in calcium levels is the trigger used by the cell to initiate contraction. Besides, calcium modulates several transmembrane currents, affecting the cell transmembrane potential. Thus, dysregulations in calcium handling have been associated with the appearance of arrhythmias. Often, this dysregulation results in the appearance of periodic calcium waves or global oscillations, providing a pro-arrhythmic substrate. In this paper, we study the onset of calcium oscillations in cardiac cells using both a detailed subcellular model of calcium dynamics and a minimal model that takes into account the essential ingredients of the calcium toolkit. Both reproduce the main experimental results and link this behavior with the presence of different steady-state solutions and bifurcations that depend on the total amount of calcium in the cell and in the level of buffering present. We expect that this work will help to clarify the conditions under which calcium oscillations appear in cardiac myocytes and, therefore, will represent a step further in the understanding of the origin of cardiac arrhythmias.

Suggested Citation

  • Miquel Marchena & Blas Echebarria & Yohannes Shiferaw & Enrique Alvarez-Lacalle, 2020. "Buffering and total calcium levels determine the presence of oscillatory regimes in cardiac cells," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-28, September.
  • Handle: RePEc:plo:pcbi00:1007728
    DOI: 10.1371/journal.pcbi.1007728
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007728
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007728&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.