IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007074.html
   My bibliography  Save this article

Perturbing low dimensional activity manifolds in spiking neuronal networks

Author

Listed:
  • Emil Wärnberg
  • Arvind Kumar

Abstract

Several recent studies have shown that neural activity in vivo tends to be constrained to a low-dimensional manifold. Such activity does not arise in simulated neural networks with homogeneous connectivity and it has been suggested that it is indicative of some other connectivity pattern in neuronal networks. In particular, this connectivity pattern appears to be constraining learning so that only neural activity patterns falling within the intrinsic manifold can be learned and elicited. Here, we use three different models of spiking neural networks (echo-state networks, the Neural Engineering Framework and Efficient Coding) to demonstrate how the intrinsic manifold can be made a direct consequence of the circuit connectivity. Using this relationship between the circuit connectivity and the intrinsic manifold, we show that learning of patterns outside the intrinsic manifold corresponds to much larger changes in synaptic weights than learning of patterns within the intrinsic manifold. Assuming larger changes to synaptic weights requires extensive learning, this observation provides an explanation of why learning is easier when it does not require the neural activity to leave its intrinsic manifold.Author summary: A network in the brain consists of thousands of neurons. A priori, we expect that the network will have as many degrees of freedom as its number of neurons. Surprisingly, experimental evidence suggests that local brain activity is confined to a subspace spanned by ~10 variables. Here, we employ three established approaches to construct spiking neuronal networks that exhibit low-dimensional activity. Using these models we address a specific experimental observation, namely that monkeys easily can elicit any activity within the subspace but have trouble with any activity outside. Specifically, we show that tasks that requires animals to change the network activity outside the subspace would entail large changes in the neuronal connectivity, and therefore, animals are either slow or not able to acquire such tasks.

Suggested Citation

  • Emil Wärnberg & Arvind Kumar, 2019. "Perturbing low dimensional activity manifolds in spiking neuronal networks," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-23, May.
  • Handle: RePEc:plo:pcbi00:1007074
    DOI: 10.1371/journal.pcbi.1007074
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007074
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007074&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.