IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007069.html
   My bibliography  Save this article

Comprehensively benchmarking applications for detecting copy number variation

Author

Listed:
  • Le Zhang
  • Wanyu Bai
  • Na Yuan
  • Zhenglin Du

Abstract

Motivation: Recently, copy number variation (CNV) has gained considerable interest as a type of genomic variation that plays an important role in complex phenotypes and disease susceptibility. Since a number of CNV detection methods have recently been developed, it is necessary to help investigators choose suitable methods for CNV detection depending on their objectives. For this reason, this study compared ten commonly used CNV detection applications, including CNVnator, ReadDepth, RDXplorer, LUMPY and Control-FREEC, benchmarking the applications by sensitivity, specificity and computational demands. Taking the DGV gold standard variants as a standard dataset, we evaluated the ten applications with real sequencing data at sequencing depths from 5X to 50X. Among the ten methods benchmarked, LUMPY performs the best for both high sensitivity and specificity at each sequencing depth. For the purpose of high specificity, Canvas is also a good choice. If high sensitivity is preferred, CNVnator and RDXplorer are better choices. Additionally, CNVnator and GROM-RD perform well for low-depth sequencing data. Our results provide a comprehensive performance evaluation for these selected CNV detection methods and facilitate future development and improvement in CNV prediction methods.Author summary: As an important type of genomic structural variation, CNVs are associated with complex phenotypes because they change the number of copies of genes in cells, affecting coding sequences and playing an important role in the susceptibility or resistance to human diseases. To identify CNVs, several experimental methods have been developed, but their resolution is very low, and the detection of short CNVs presents a bottleneck. In recent years, the advancement of high-throughput sequencing techniques has made it possible to precisely detect CNVs, especially short ones. Many CNV detection applications were developed based on the availability of high-throughput sequencing data. Due to different CNV detection algorithms, the CNVs identified by different applications vary greatly. Therefore, it is necessary to help investigators choose suitable applications for CNV detection depending upon their objectives. For this reason, we not only compared ten commonly used CNV detection applications but also benchmarked the applications by sensitivity, specificity and computational demands. Our results show that the sequencing depth can strongly affect CNV detection. Among the ten applications benchmarked, LUMPY performs best for both high sensitivity and specificity for each sequencing depth. We also give recommended applications for specific purposes, for example, CNVnator and RDXplorer for high sensitivity and CNVnator and GROM-RD for low-depth sequencing data.

Suggested Citation

  • Le Zhang & Wanyu Bai & Na Yuan & Zhenglin Du, 2019. "Comprehensively benchmarking applications for detecting copy number variation," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-12, May.
  • Handle: RePEc:plo:pcbi00:1007069
    DOI: 10.1371/journal.pcbi.1007069
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007069
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007069&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Le Zhang & Chunqiu Zheng & Tian Li & Lei Xing & Han Zeng & Tingting Li & Huan Yang & Jia Cao & Badong Chen & Ziyuan Zhou, 2017. "Building Up a Robust Risk Mathematical Platform to Predict Colorectal Cancer," Complexity, Hindawi, vol. 2017, pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007069. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.