Author
Listed:
- Anthony Stigliani
- Brianna Jeska
- Kalanit Grill-Spector
Abstract
How do high-level visual regions process the temporal aspects of our visual experience? While the temporal sensitivity of early visual cortex has been studied with fMRI in humans, temporal processing in high-level visual cortex is largely unknown. By modeling neural responses with millisecond precision in separate sustained and transient channels, and introducing a flexible encoding framework that captures differences in neural temporal integration time windows and response nonlinearities, we predict fMRI responses across visual cortex for stimuli ranging from 33 ms to 20 s. Using this innovative approach, we discovered that lateral category-selective regions respond to visual transients associated with stimulus onsets and offsets but not sustained visual information. Thus, lateral category-selective regions compute moment-to-moment visual transitions, but not stable features of the visual input. In contrast, ventral category-selective regions process both sustained and transient components of the visual input. Our model revealed that sustained channel responses to prolonged stimuli exhibit adaptation, whereas transient channel responses to stimulus offsets are surprisingly larger than for stimulus onsets. This large offset transient response may reflect a memory trace of the stimulus when it is no longer visible, whereas the onset transient response may reflect rapid processing of new items. Together, these findings reveal previously unconsidered, fundamental temporal mechanisms that distinguish visual streams in the human brain. Importantly, our results underscore the promise of modeling brain responses with millisecond precision to understand the underlying neural computations.Author summary: How does the brain encode the timing of our visual experience? Using functional magnetic resonance imaging (fMRI) and a generative temporal model with millisecond resolution, we discovered that visual regions in the lateral and ventral processing streams fundamentally differ in their temporal processing of the visual input. Regions in lateral temporal cortex process visual transients associated with the beginning and ending of the stimulus, but not its stable aspects. That is, lateral regions appear to compute moment-to-moment changes in the visual input. In contrast, regions in ventral temporal cortex process both stable and transient components of the visual input, even as the response to the former exhibits adaptation. Surprisingly, the model predicts that in ventral regions responses to stimulus endings are larger than beginnings. We suggest that ending responses may reflect a memory trace of the stimulus, when it is no longer visible, and the beginning responses may reflect processing of new inputs. Together, these findings (i) reveal a fundamental temporal mechanism that distinguishes visual streams and (ii) highlight both the importance and utility of modeling brain responses with millisecond precision to understand the temporal dynamics of neural computations in the human brain.
Suggested Citation
Anthony Stigliani & Brianna Jeska & Kalanit Grill-Spector, 2019.
"Differential sustained and transient temporal processing across visual streams,"
PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-26, May.
Handle:
RePEc:plo:pcbi00:1007011
DOI: 10.1371/journal.pcbi.1007011
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007011. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.