IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006931.html
   My bibliography  Save this article

Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs

Author

Listed:
  • Cheng Liang
  • Shengpeng Yu
  • Jiawei Luo

Abstract

Increasing evidence has indicated that microRNAs(miRNAs) play vital roles in various pathological processes and thus are closely related with many complex human diseases. The identification of potential disease-related miRNAs offers new opportunities to understand disease etiology and pathogenesis. Although there have been numerous computational methods proposed to predict reliable miRNA-disease associations, they suffer from various limitations that affect the prediction accuracy and their applicability. In this study, we develop a novel method to discover disease-related candidate miRNAs based on Adaptive Multi-View Multi-Label learning(AMVML). Specifically, considering the inherent noise existed in the current dataset, we propose to learn a new affinity graph adaptively for both diseases and miRNAs from multiple similarity profiles. We then simultaneously update the miRNA-disease association predicted from both spaces based on multi-label learning. In particular, we prove the convergence of AMVML theoretically and the corresponding analysis indicates that it has a fast convergence rate. To comprehensively illustrate the prediction performance of our method, we compared AMVML with four state-of-the-art methods under different validation frameworks. As a result, our method achieved comparable performance under various evaluation metrics, which suggests that our method is capable of discovering greater number of true miRNA-disease associations. The case study conducted on thyroid neoplasms further identified a potential diagnostic biomarker. Together, the experimental results confirms the utility of our method and we anticipate that our method could serve as a reliable and efficient tool for uncovering novel disease-related miRNAs.Author summary: MiRNAs are a class of small non-coding RNAs that are associated with a variety of complex biological processes. Increasing studies have shown that miRNAs have close relationships with many human diseases. The prediction of the associations between miRNAs and diseases has thus become a hot topic. Although traditional experimental methods are reliable, they could only identify a limited number of associations as they are in general time-consuming and expensive. Consequently, great efforts have been made to effectively predict reliable disease-related miRNAs based on computational methods. In this study, we develop a novel method to discover potential miRNA-disease associations based on Adaptive Multi-View Multi-Label learning. Considering the inherent noise existed in the current dataset, we propose to learn a new affinity graph adaptively for both diseases and miRNAs from multiple biological data source, including miRNA sequence similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Notably, our method is applicable to diseases without any known associated miRNAs and also obtains satisfactory results. The case study conducted on thyroid neoplasms further confirms the prediction reliability of the proposed method. Overall, results show that our method can predict the potential associations between miRNAs and diseases effectively.

Suggested Citation

  • Cheng Liang & Shengpeng Yu & Jiawei Luo, 2019. "Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-18, April.
  • Handle: RePEc:plo:pcbi00:1006931
    DOI: 10.1371/journal.pcbi.1006931
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006931
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006931&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang Li & Yingwei Deng & Yan Tan & Min Chen, 2021. "A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    2. Xie, Guobo & Wu, Lifeng & Lin, Zhiyi & Cui, Ji, 2020. "WLDAP: A computational model of weighted lncRNA-disease associations prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.