Author
Listed:
- Ramu Anandakrishnan
- Robin T Varghese
- Nicholas A Kinney
- Harold R Garner
Abstract
Individual instances of cancer are primarily a result of a combination of a small number of genetic mutations (hits). Knowing the number of such mutations is a prerequisite for identifying specific combinations of carcinogenic mutations and understanding the etiology of cancer. We present a mathematical model for estimating the number of hits based on the distribution of somatic mutations. The model is fundamentally different from previous approaches, which are based on cancer incidence by age. Our somatic mutation based model is likely to be more robust than age-based models since it does not require knowing or accounting for the highly variable mutation rate, which can vary by over three orders of magnitude. In fact, we find that the number of somatic mutations at diagnosis is weakly correlated with age at cancer diagnosis, most likely due to the extreme variability in mutation rates between individuals. Comparing the distribution of somatic mutations predicted by our model to the actual distribution from 6904 tumor samples we estimate the number of hits required for carcinogenesis for 17 cancer types. We find that different cancer types exhibit distinct somatic mutational profiles corresponding to different numbers of hits. Why might different cancer types require different numbers of hits for carcinogenesis? The answer may provide insight into the unique etiology of different cancer types.Author summary: Cancer is primarily a result of genetic mutations. Each individual instance of cancer is initiated by a specific combination of a small number of mutations (hits). In trying to identify these combinations of mutations, it is important to know how many hits to look for. However, there are conflicting estimates for the number of hits. We present a fundamentally different model for estimating the number of hits. We found that the number hits ranges from two-eight depending on cancer type. These findings may provide insight into the unique characteristics of different cancer types.
Suggested Citation
Ramu Anandakrishnan & Robin T Varghese & Nicholas A Kinney & Harold R Garner, 2019.
"Estimating the number of genetic mutations (hits) required for carcinogenesis based on the distribution of somatic mutations,"
PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-19, March.
Handle:
RePEc:plo:pcbi00:1006881
DOI: 10.1371/journal.pcbi.1006881
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006881. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.