Author
Listed:
- Thi Mui Pham
- Mirjam Kretzschmar
- Xavier Bertrand
- Martin Bootsma
- on behalf of COMBACTE-MAGNET Consortium
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important cause of healthcare-associated infections, particularly in immunocompromised patients. Understanding how this multi-drug resistant pathogen is transmitted within intensive care units (ICUs) is crucial for devising and evaluating successful control strategies. While it is known that moist environments serve as natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding the contribution of environmental contamination to its transmission within ICUs. Previous studies on other nosocomial pathogens rely on deploying specific values for environmental parameters derived from costly and laborious genotyping. Using solely longitudinal surveillance data, we estimated the relative importance of P. aeruginosa transmission routes by exploiting the fact that different routes cause different pattern of fluctuations in the prevalence. We developed a mathematical model including background transmission, cross-transmission and environmental contamination. Patients contribute to a pool of pathogens by shedding bacteria to the environment. Natural decay and cleaning of the environment lead to a reduction of that pool. By assigning the bacterial load shed during an ICU stay to cross-transmission, we were able to disentangle environmental contamination during and after a patient’s stay. Based on a data-augmented Markov Chain Monte Carlo method the relative importance of the considered acquisition routes is determined for two ICUs of the University hospital in Besançon (France). We used information about the admission and discharge days, screening days and screening results of the ICU patients. Both background and cross-transmission play a significant role in the transmission process in both ICUs. In contrast, only about 1% of the total transmissions were due to environmental contamination after discharge. Based on longitudinal surveillance data, we conclude that cleaning improvement of the environment after discharge might have only a limited impact regarding the prevention of P.A. infections in the two considered ICUs of the University hospital in Besançon. Our model was developed for P. aeruginosa but can be easily applied to other pathogens as well.Author summary: Understanding the transmission dynamics of multi-drug resistant pathogens in intensive-care units is essential for designing successful infection control strategies. We developed a method that estimates the relative importance of several transmission routes of Pseudomonas aeruginosa (P. aeruginosa), a bacterium intrinsically resistant to multiple antibiotics and known to be a major contributor to hospital-acquired infections. Our model includes three different routes: background transmission, cross-transmission and environmental contamination. Since moist environments may serve as natural reservoirs for P. aeruginosa, we focused our study on environmental contamination. Patients contribute to a pool of pathogens by shedding bacteria to the environment. Natural decay and cleaning of the environment lead to a reduction of that pool. By assigning the bacterial load shed during an ICU stay to cross-transmission, we disentangled environmental contamination during and after a patient’s stay. Previous studies were able to assess the role of environmental contamination for specific hospitals using laborious and costly genotyping methods. In contrast, we only used surveillance screening data to estimate the relative contributions of the considered transmission routes. Our results can be used to tailor or assess the effect of interventions. Our model was developed for P. aeruginosa but can be easily applied to other pathogens as well.
Suggested Citation
Thi Mui Pham & Mirjam Kretzschmar & Xavier Bertrand & Martin Bootsma & on behalf of COMBACTE-MAGNET Consortium, 2019.
"Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models,"
PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-26, August.
Handle:
RePEc:plo:pcbi00:1006697
DOI: 10.1371/journal.pcbi.1006697
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006697. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.