IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006586.html
   My bibliography  Save this article

Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations

Author

Listed:
  • Marie Levakova
  • Lubomir Kostal
  • Christelle Monsempès
  • Vincent Jacob
  • Philippe Lucas

Abstract

The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.Author summary: Sensory neural systems of living organisms encode the representation of their environment with remarkable efficiency. We study the dynamic coding of naturalistic olfactory stimulation by pheromone-specific antennal neurons. The analysis reveals that the representation is optimal from several complementary information-theoretic perspectives. (1) Pheromone encounters are best detected if the concentration follows the naturally intermittent time course. (2) Antennal neurons dynamically adjust to the local stimulus statistics. (3) The coding accuracy profile and the stimulus-timescale distribution are in the relationship predicted by both information theory and statistical estimation theory.

Suggested Citation

  • Marie Levakova & Lubomir Kostal & Christelle Monsempès & Vincent Jacob & Philippe Lucas, 2018. "Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:plo:pcbi00:1006586
    DOI: 10.1371/journal.pcbi.1006586
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006586
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006586&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicol S. Harper & David McAlpine, 2004. "Optimal neural population coding of an auditory spatial cue," Nature, Nature, vol. 430(7000), pages 682-686, August.
    2. Jean-Pierre Rospars & Alexandre Grémiaux & David Jarriault & Antoine Chaffiol & Christelle Monsempes & Nina Deisig & Sylvia Anton & Philippe Lucas & Dominique Martinez, 2014. "Heterogeneity and Convergence of Olfactory First-Order Neurons Account for the High Speed and Sensitivity of Second-Order Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    3. Lubomir Kostal & Petr Lansky & Jean-Pierre Rospars, 2008. "Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Barta & Lubomir Kostal, 2019. "The effect of inhibition on rate code efficiency indicators," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Rospars & Alexandre Grémiaux & David Jarriault & Antoine Chaffiol & Christelle Monsempes & Nina Deisig & Sylvia Anton & Philippe Lucas & Dominique Martinez, 2014. "Heterogeneity and Convergence of Olfactory First-Order Neurons Account for the High Speed and Sensitivity of Second-Order Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    2. Mark R. Saddler & Josh H. McDermott, 2024. "Models optimized for real-world tasks reveal the task-dependent necessity of precise temporal coding in hearing," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    3. Filippo Moro & Emmanuel Hardy & Bruno Fain & Thomas Dalgaty & Paul Clémençon & Alessio Prà & Eduardo Esmanhotto & Niccolò Castellani & François Blard & François Gardien & Thomas Mesquida & François Ru, 2022. "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.