Author
Listed:
- Gihan Weerasinghe
- Benoit Duchet
- Hayriye Cagnan
- Peter Brown
- Christian Bick
- Rafal Bogacz
Abstract
Deep brain stimulation (DBS) is known to be an effective treatment for a variety of neurological disorders, including Parkinson’s disease and essential tremor (ET). At present, it involves administering a train of pulses with constant frequency via electrodes implanted into the brain. New ‘closed-loop’ approaches involve delivering stimulation according to the ongoing symptoms or brain activity and have the potential to provide improvements in terms of efficiency, efficacy and reduction of side effects. The success of closed-loop DBS depends on being able to devise a stimulation strategy that minimizes oscillations in neural activity associated with symptoms of motor disorders. A useful stepping stone towards this is to construct a mathematical model, which can describe how the brain oscillations should change when stimulation is applied at a particular state of the system. Our work focuses on the use of coupled oscillators to represent neurons in areas generating pathological oscillations. Using a reduced form of the Kuramoto model, we analyse how a patient should respond to stimulation when neural oscillations have a given phase and amplitude, provided a number of conditions are satisfied. For such patients, we predict that the best stimulation strategy should be phase specific but also that stimulation should have a greater effect if applied when the amplitude of brain oscillations is lower. We compare this surprising prediction with data obtained from ET patients. In light of our predictions, we also propose a new hybrid strategy which effectively combines two of the closed-loop strategies found in the literature, namely phase-locked and adaptive DBS.Author summary: Deep brain stimulation (DBS) involves delivering electrical impulses to target sites within the brain and is a proven therapy for a variety of neurological disorders. Closed loop DBS is a promising new approach where stimulation is applied according to the state of a patient. Crucial to the success of this approach is being able to predict how a patient should respond to stimulation. Our work focusses on DBS as applied to patients with essential tremor (ET). On the basis of a theoretical model, which describes neurons as oscillators that respond to stimulation and have a certain tendency to synchronize, we provide predictions for how a patient should respond when stimulation is applied at a particular phase and amplitude of the ongoing tremor oscillations. Previous experimental studies of closed loop DBS provided stimulation either on the basis of ongoing phase or amplitude of pathological oscillations. Our study suggests how both of these measurements can be used to control stimulation. As part of this work, we also look for evidence for our theories in experimental data and find our predictions to be satisfied in one patient. The insights obtained from this work should lead to a better understanding of how to optimise closed loop DBS strategies.
Suggested Citation
Gihan Weerasinghe & Benoit Duchet & Hayriye Cagnan & Peter Brown & Christian Bick & Rafal Bogacz, 2019.
"Predicting the effects of deep brain stimulation using a reduced coupled oscillator model,"
PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-28, August.
Handle:
RePEc:plo:pcbi00:1006575
DOI: 10.1371/journal.pcbi.1006575
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006575. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.