IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006232.html
   My bibliography  Save this article

Transmission of temporally correlated spike trains through synapses with short-term depression

Author

Listed:
  • Alex D Bird
  • Magnus J E Richardson

Abstract

Short-term synaptic depression, caused by depletion of releasable neurotransmitter, modulates the strength of neuronal connections in a history-dependent manner. Quantifying the statistics of synaptic transmission requires stochastic models that link probabilistic neurotransmitter release with presynaptic spike-train statistics. Common approaches are to model the presynaptic spike train as either regular or a memory-less Poisson process: few analytical results are available that describe depressing synapses when the afferent spike train has more complex, temporally correlated statistics such as bursts. Here we present a series of analytical results—from vesicle release-site occupancy statistics, via neurotransmitter release, to the post-synaptic voltage mean and variance—for depressing synapses driven by correlated presynaptic spike trains. The class of presynaptic drive considered is that fully characterised by the inter-spike-interval distribution and encompasses a broad range of models used for neuronal circuit and network analyses, such as integrate-and-fire models with a complete post-spike reset and receiving sufficiently short-time correlated drive. We further demonstrate that the derived post-synaptic voltage mean and variance allow for a simple and accurate approximation of the firing rate of the post-synaptic neuron, using the exponential integrate-and-fire model as an example. These results extend the level of biological detail included in models of synaptic transmission and will allow for the incorporation of more complex and physiologically relevant firing patterns into future studies of neuronal networks.Author summary: Synapses between neurons transmit signals with strengths that vary with the history of their activity, over scales from milliseconds to decades. Short-term changes in synaptic strength modulate and sculpt ongoing neuronal activity, whereas long-term changes underpin memory formation. Here we focus on changes of strength over timescales of less than a second caused by transitory depletion of the neurotransmitters that carry signals across the synapse. Neurotransmitters are stored in small vesicles that release their contents, with a certain probability, when the presynaptic neuron is active. Once a vesicle has been used it is replenished after a variable delay. There is therefore a complex interaction between the pattern of incoming signals to the synapse and the probablistic release and restock of packaged neurotransmitter. Here we extend existing models to examine how correlated synaptic activity is transmitted through synapses and affects the voltage fluctuations and firing rate of the target neuron. Our results provide a framework that will allow for the inclusion of biophysically realistic synaptic behaviour in studies of neuronal circuits.

Suggested Citation

  • Alex D Bird & Magnus J E Richardson, 2018. "Transmission of temporally correlated spike trains through synapses with short-term depression," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-25, June.
  • Handle: RePEc:plo:pcbi00:1006232
    DOI: 10.1371/journal.pcbi.1006232
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006232
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006232&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.