Author
Listed:
- Travers Ching
- Xun Zhu
- Lana X Garmire
Abstract
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.Author summary: The increasing application of high-througput transcriptomics data to predict patient prognosis demands modern computational methods. With the re-gaining popularity of artificial neural networks, we asked if a refined neural network model could be used to predict patient survival, as an alternative to the conventional methods, such as Cox proportional hazards (Cox-PH) methods with LASSO or ridge penalization. To this end, we have developed a neural network extension of the Cox regression model, called Cox-nnet. It is optimized for survival prediction from high throughput gene expression data, with comparable or better performance than other conventional methods. More importantly, Cox-nnet reveals much richer biological information, at both the pathway and gene levels, by analyzing features represented in the hidden layer nodes in Cox-nnet. Additionally, we propose to use hidden node features as a new approach for dimension reduction during survival data analysis.
Suggested Citation
Travers Ching & Xun Zhu & Lana X Garmire, 2018.
"Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data,"
PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-18, April.
Handle:
RePEc:plo:pcbi00:1006076
DOI: 10.1371/journal.pcbi.1006076
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.